Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
отчёт по геологии.docx
Скачиваний:
2
Добавлен:
08.07.2019
Размер:
486 Кб
Скачать

Настоящий отчет составлен по материалам учебный практики по геологии, проходивший с 7 по 14 июля 2011 года. Практика проводилась студентами 1 курса группы ПСМ-194 под руководством преподавателя А.В. Гридневского

Цель практики:  изучение геологии Ростова-на-Дону, её особенностей, истории развития.

С этой целью мы посетили Южный Федеральный Университет и его лаборатории. В первый день руководителем было проведено организационное собрание. Во  второй день мы изучали минералы и горные породы в центре города «Ростов-на-Дону.» В третий день преподаватель прочитал нам теоретический курс об истории развития инженерной геологии. Затем мы посетили кафедру геологии Южного федерального университета, а также лаборатории кафедры. К сожалению в музее геологии ЮФУ побывать не удалось. В последний день практики наша группа посетила завод по производству отделочных материалов.

Аналитические методы исследования минералов

Минера́л (фр. minéral, от позднелат. minera — руда) — природное тело с определённым химическим составом и кристаллической структурой, образующееся в результате природных физико-химических процессов и обладающее определёнными физическими, механическими и химическими свойствами. Является составной частью земной коры, горных породрудметеоритов. Изучением минералов занимается наука минералогия. В настоящее время установлено около 4200 минеральных видов. Однако лишь несколько десятков минералов (около 70) пользуются широким распространением. Они входят в состав горных пород и называются породообразующими.

Понятие «минерал» часто употребляется в значении «минеральный вид», то есть как совокупность минеральных тел данного химического состава с данной кристаллической структурой.

Кристаллическая структура является и важнейшей диагностической характеристикой минерала, и носителем заложенной в минерале генетической информации, расшифровкой которой среди прочего занимается минералогия. Вопрос о целесообразности отнесения к минералам в порядке «исключений из правила» некоторых некристаллических (жидких или рентгеноаморфных) продуктов является спорным и до сих пор дискутируется учеными. Вместе с тем современные исследования показали, что некоторые аморфные, как считалось ранее, геологические продукты, например опал, устроены сложнее, чем считалось ранее и обладают внутренней «структурой дальнего порядка».

Классификация минералов

Существует много вариантов классификаций минералов. Большинство из них построено по структурно-химическому принципу.

По распространённости минералы можно разделить на породообразующие — составляющие основу большинства горных пород,акцессорные — часто присутствующие в горных породах, но редко слагающие больше 5 % породы, редкие, случаи нахождения которых единичны или немногочисленны, и рудные, широко представленные в рудных месторождениях.

Наиболее широко используется классификация по химическому составу и кристаллической структуре. Вещества одного химического типа часто имеют близкую структуру, поэтому минералы, сначала делятся на классы по химическому составу, а затем на подклассы по структурным признакам. Общепринятая в настоящее время кристаллохимическая классификация минералов подразделяет все их на КЛАССЫ и выглядит следующим образом:

I. Раздел Самородные элементы и интерметаллические соединения

II. Раздел Сульфиды, сульфосоли и им подобные соединения

  • 1. класс Сульфиды и им подобные соединения

  • 2. класс Сульфосоли

III. Раздел Галоидные соединения (Галогениды)

  • 1. класс Фториды

  • 2. класс Хлориды, бромиды и иодиды

IV. Раздел Окислы (оксиды)

  • 1. класс Простые и сложные окислы

  • 2. класс Гидроокислы или окислы, содержащие гидроксил

V. Раздел Кислородные соли (оксисоли)

  • 1. класс Нитраты

  • 2. класс Карбонаты

  • 3. класс Сульфаты

  • 4. класс Хроматы

  • 5. Класс Вольфрамиты и молибдаты

  • 6. Класс Фосфаты, арсенаты и ванадаты

  • 7. Класс Бораты

  • 8. Класс Силикаты

    • А. Островные силикаты.

    • Б. Цепочечные силикаты.

    • В. Ленточные силикаты.

    • Г. Слоистые силикаты.

    • Д. Каркасные силикаты.

VI. Раздел Органические соединения

Свойства минералов

Важнейшими характеристиками минералов являются кристаллохимическая структура и состав. Все остальные свойства минералов вытекают из них или с ними взаимосвязаны. Важнейшие свойства минералов, являющиеся диагностическими признаками и позволяющие их определять, следующие:

  • Габитус кристаллов. Выясняется при визуальном осмотре, для рассматривания мелких образцов используется лупа

  • Твердость. Определяется по шкале Мооса

  • Блеск — световой эффект, вызываемый отражением части светового потока, падающего на минерал. Зависит от отражательной способности минерала.

  • Спайность — способность минерала раскалываться по определённым кристаллографическим направлениям.

  • Излом — специфика поверхности минерала на свежем не спайном сколе.

  • Цвет — признак, с определённостью характеризующий одни минералы (зелёный малахит, синий лазурит, красная киноварь), и очень обманчивый у ряда других минералов, окраска которых может варьировать в широком диапазоне в зависимости от наличия примесей элементов-хромофоров либо специфических дефектов в кристаллической структуре (флюоритыкварцытурмалины).

  • Цвет черты — цвет минерала в тонком порошке, обычно определяемый царапанием по шершавой поверхности фарфорового бисквита.

  • Магнитность — зависит от содержания, главным образом двухвалентного железа, обнаруживается при помощи обычного магнита.

  • Побежалость — тонкая цветная или разноцветная плёнка, которая образуется на выветренной поверхности некоторых минералов за счёт окисления.

  • Хрупкость — прочность минеральных зёрен (кристаллов), обнаруживающаяся при механическом раскалывании. Хрупкость иногда увязывают или путают с твёрдостью, что неверно. Иные очень твёрдые минералы могут с лёгкостью раскалываться, то есть быть хрупкими (например, алмаз)

Эти свойства минералов легко определяются в полевых условиях. К другим свойствам минералов относятся, например, оптические свойства: ПреломлениеДисперсия и Поляризация, которые характеризуются их оптическими константами: показатель преломления, угол между оптическими осями, оптический знак кристалла, ориентация оптической индикатрисы и др.

До 19 века было описано несколько сот минералов . 19 век добавил 1000 минералов . 20 век 2500 минералов.

Около 2500 минералов содержат в себе воду в разных состояниях.

Призма Николя (сокр. николь) — поляризационное устройство, в основе принципа, действия которого лежат эффекты двойного лучепреломления и полного внутреннего отражения.

Призма Николя представляет собой две одинаковые треугольные призмы из исландского шпата, склеенные тонким слоем канадского бальзама. Призмы вытачиваются так, чтобы торец был скошен под углом 68° относительно направления проходящего света, а склеиваемые стороны составляли прямой угол с торцами. При этом оптическая ось кристалла (AB) находится под углом 64° с направлением света.

Апертура полной поляризации призмы составляет 29°. Особенностью призмы является изменение направления выходящего луча при вращении призмы, обусловленное преломлением скошенных торцов призмы. Призма не может применяться для поляризации ультрафиолета, так как канадский бальзам поглощает ультрафиолет.

Свет с произвольной поляризацией, проходя через торец призмы испытывает двойное лучепреломление, расщепляясь на два луча — обыкновенный, имеющий горизонтальную плоскость поляризации (AO) и необыкновенный, с вертикальной плоскостью поляризации (АE). После чего обыкновенный луч испытывает полное внутреннее отражение о плоскость склеивания и выходит через боковую поверхность. Необыкновенный беспрепятственно выходит через противоположный торец призмы.

Призма Николя находит своё применение наряду с прочими поляризационными устройствами в различных областях науки и техники, хотя подавляющей частью они ныне заменены на более технологичные.

До появления дешёвых поляроидных плёнок призма Николя использовалась для просмотра стереофотографий, проецируемых на экран (предложено Андертоном в 1891 г. [1]).

Петрография - наука о классификации горных пород, которая построена на детальных описаниях минерального состава, структурно-текстурных особенностей, химического состава и др. Смежной наукой, направленной на изучение процессов образования горных пород, является петрология.

Поляризационный микроскоп- в основе принципа действия поляризационных микроскопов лежит получение изображения исследуемого объекта при его облучении поляризованными лучами, которые в свою очередь должны быть получены из обычного света с помощью специального прибора — поляризатора. В сущности при прохождении поляризованного света через вещество либо отраженное от него меняет плоскость поляризации света в результате чего на втором поляризационном фильтре выявляется в виде излишнего затемнения. Либо дают специфичные реакции как двойное лучепреломление в жирах.

В 1669 г. Н. Стенон открыл закон постоянства углов в кристаллах кварца и гематита. Внимательно разглядывая реальные кристаллы кварца, Стенон также обратил внимание на их отклонение от идеальных геометрических многогранников с плоскими гранями и прямыми ребрами. В своем трактате он впервые ввел в науку реальный кристалл с его несовершенствами и отклонениями от идеализированных схем. Однако все эти отклонения не помешали ученому открыть на тех же кристаллах кварца основной закон геометрической кристаллографии.

Кристаллогра́фия — наука о кристаллах, их структуре, возникновении и свойствах. Она тесно связана с минералогиейфизикой твёрдых тел и химией. Исторически кристаллография возникла в рамках минералогии, как наука описывающая идеальные кристаллы.

Расположение атомов в кристалле — кристаллическая решетка — может принимать множество геометрических форм. Мы опишем сначала простейшие решетки, характерные для большинства металлов и инертных газов в твердом состоянии. Это кубические решетки, которые могут быть двух видов: объемно центрированная кубическая (фиг. 30.4, а) игра не центрированная кубическая (фиг. 30.4, б). Конечно, на рисунках показан только один «куб» решетки; вы должны мысленно представить, что все это повторяется в трех измерениях до бесконечности. Для простоты на рисунке показаны только «центры» атомов. В настоящих кристаллах атомы скорее похожи на соприкасающиеся друг с другом шарики. Темные и светлые шарики на приведенных рисунках могут, вообще говоря, означать либо разные, либо одинаковые сорта атомов. Так, железо имеет объемно центрированную кубическую решетку при низких температурах и гранецентрированную кубическую решетку при более высоких температурах. Физические свойства этих двух кристаллических форм совершенно различны.

Но как возникают такие формы? Представьте, что вы должны как можно плотнее упаковать атомы — шарики. Можно было бы начать со слоя, где шарики уложены в «гексагональной плотной упаковке», как показано на фиг. 30.5, а. Затем можно построить второй слой наподобие первого, но сместив его в горизонтальном направлении, как показано на фиг. 30.5, б. А потом можно наложить и третий слой. Вот тут — внимание! Третий слой можно наложить двумя разными способами. Если вы начнете класть третий слой, помещая атом в точку А на фиг. 30.5, б, то каждый атом в третьем слое окажется прямо над атомом первого нижнего слоя. Если же начать класть третий слой, помещая атом в точку В, то атомы третьего слоя будут расположены как раз над центрами треугольников, образованных тремя атомами нижнего слоя. Любая другая начальная точка эквивалентна  А или В, так что существует только два способа размещения третьего слоя.

Если третий слой имеет атом в точке В,кристаллическая решетка будет гранецентрированной кубической, но видно это под некоторым углом. Забавно, что, начав с шестиугольников, можно прийти к кубической структуре. Но обратите внимание, что куб, рассматриваемый под определенным углом, имеет очертания шестиугольника. Например, фиг. 30.6 может изображать либо плоский шестиугольник, либо и куб в перспективе!   Если к фиг. 30.5, б добавляется третий слой, начиная с атома в точке А,то кубической структуры не возникает и у решетки будет только гексагональная симметрия. Ясно, что обе описанные нами возможности дают одинаковую плотную упаковку. Некоторые металлы (например, серебро и медь) выбирают первую альтернативу — решетка у них гранецентрированная кубическая. Другие же (например, бериллий и магний) предпочитают вторую  возможность  и образуют  гексагональные кристаллы. Очевидно, появление той или иной решетки не может зависеть только от способа упаковки маленьких шариков, но должно еще определяться и другими факторами. В частности,   оказывается  существенной небольшая угловая зависимость межатомных сил (или в случае металлов от энергии электронного океана). Все эти вещи вы несомненно узнаете из курса химии.

Дифракция рентгеновских лучей, рассеяние рентгеновских лучей кристаллами (или молекулами жидкостей и газов), при котором из начального пучка лучей возникают вторичные отклонённые пучки той же длины волны, появившиеся в результате взаимодействия первичных рентгеновских лучей с электронами вещества; направление и интенсивность вторичных пучков зависят от строения рассеивающего объекта.

Дифрагированные пучки составляют часть всего рассеянного веществом рентгеновского излучения. Наряду с рассеянием без изменения длины волны наблюдается рассеяние с изменением длины волны — так называемое комптоновское рассеяние. Явление дифракции рентгеновских лучей, доказывающее их волновую природу, впервые было экспериментально обнаружено на кристаллах немецкими физиками М.Лауэ, В. Фридрихом и П. Книппингом в 1912.

Кристалл является естественной трёхмерной дифракционной решеткой для рентгеновских лучей, т.к. расстояние между рассеивающими центрами (атомами) в кристалле одного порядка с длиной волны рентгеновских лучей (~1Å=10-8см). Дифракция рентгеновских лучей на кристаллах можно рассматривать как избирательное отражение рентгеновских лучей от систем атомных плоскостей кристаллической решётки (определяется условием Брэгга-Вульфа). Направление дифракционных максимумов удовлетворяет одновременно трём условиям:

a (cos a — cos a0) = Нl,

b (cos b — cos b0) = Kl,

с (cos g — cos g0) = Ll.

Здесь а, b , с — периоды кристаллической решетки по трём её осям; a0, b0, g0 — углы, образуемые падающим, а a, b, g — рассеянным лучами с осями кристалла; l — длина волны рентгеновских лучей, Н, К, L — целые числа. Этиуравнения называются уравнениями Лауэ.

Дифракционная решётка, оптический прибор, представляющий собой совокупность большого числа параллельных, равноотстоящих друг от друга штрихов одинаковой формы, нанесённых на плоскую или вогнутую оптическую поверхность. Дифракционная решетка представляет собой периодическую структуру: штрихи с определённым и постоянным для данной решётки профилем повторяются через строго одинаковый промежуток d, называется периодом дифракционной решетки.

Брэгга — Вульфа условие, условие, определяющее положение интерференционных максимумов рентгеновских лучей, рассеянных кристаллом без изменения длины волны. Условие Брэгга-Вульфа установлено в 1913 независимо друг от друга английским учёным У. Л. Брэггом и русским учёным Г.В.Вульфом вскоре после открытия немецким учёным М. Лауэ и его сотрудниками дифракции рентгеновских лучей. Согласно теории Брэгга - Вульфа, максимумы возникают при отражении рентгеновских лучей от системы параллельных кристаллографических плоскостей, когда лучи, отражённые разными плоскостями этой системы, имеют разность хода, равную целому числу длин волн. Условие Брегга - Вульфа можно записать в следующем виде:

2dsinJ = ml,

где d — межплоскостное расстояние, J — угол скольжения, т. е. угол между отражающей плоскостью и падающим лучом, l — длина волны рентгеновского излучения и m — так называемый, порядок отражения, т. е. положительное целое число (Рис.19).

Условие Брега-Вульфа выполняется при рассеяниикристаллами не только рентгеновских лучей, но также γ-лучей, при дифракции электронов, протонов и нейтронов.