
- •1. Развитие представлений о строении атома. Модель атома Резерфорда. Теория н Бора. Уравнение волны де Бройля. Принцип неопределенности Гейзенберга
- •10. Второй закон термодинамики. Функция состояния -энтропия. Расчет изменения энтропии при изобарном и изохорном процессах, при изотермическом расширении идеального газа, при смешении идеальных газов.
- •16.Влияние температуры на скорость реакции: уравнение Аррениуса. Энергия активации. Понятие об активированном комплексе. Методы расчета энергии активации.
- •17. Особенности кинетики гетерогенных химических реакций. Стадии процесса и области его протекания. Кинетика процесса в кинетической и диффузионных областях. Закон Фика.
- •18. Адсорбция. Виды адсорбции (физическая, химическая, активированная). Уравнение изотермы адсорбции Лэнгмюра.
- •19. Понятие о гомогенном катализе. Механизм действия катализатора. Энергетические диаграммы для некаталитической и каталитической реакции.
- •20.Понятие о гетерогенном катализе. Стадии гетерогенной каталитической реакции. Роль адсорбции в гетерогенном катализе. Энергетическая диаграмма гетерогенной каталитической реакции.
- •22. Идеальные растворы. Закон Рауля и следствия из него. Фазовые диаграммы воды и водного раствора. Понятие об осмосе, уравнение Вант-Гоффа.
- •23.Растворы электролитов. Теория электролитической диссоциации Аррениуса: степень диссоциации, константа диссоциации. Факторы, влияющие на них. Закон разбавления Оствальда.
- •30. Классификация электродов (1,2 рода). Металлические электроды. Газовые электроды: водородный, кислородный. Зависимость потенциалов водородного и кислородного электродов от рН.
- •31. Гальванические элементы и их классификация. Процессы, протекающие при работе гэ. Расчет эдс и работы гэ. Окислительно-восстановительные и концентрационные гэ. Определение рН раствора.
- •35.Коррозия. Классификация коррозионных процессов по характеру разрушений, по виду агрессивной среды, по механизму протекания. Скорость равномерной коррозии.
- •1. В аэрированных (насыщенных кислородом ) коррозионных средах:
- •2. В деаэрированных (несодержащих растворенный кислород) коррозионных средах:
- •48. Общая характеристика элементов 4а группы. Олово, свинец. Их получение; взаимодействие с кислородом, галогенами, растворами кислот и щелочей. Применение в технике.
- •49. Физические свойства кремния и германия. Собственная и примесная проводимость элементарных полупроводников. Способы получения и методы очистки полупроводниковых материалов.
16.Влияние температуры на скорость реакции: уравнение Аррениуса. Энергия активации. Понятие об активированном комплексе. Методы расчета энергии активации.
Основное влияние оказывает температура на константу скорости. Опираясь на опытные данные, Вант-Гофф установил, что при повышении температуры на 10 К скорость реакции увеличивается в 2-4 раза.
Более точную зависимость константы скорости реакции от температуры устанавливает уравнение Аррениуса:
k = k0 exр (- Еа ⁄ RT), где Еа- аррениусовская или опытная энергия активации; Т – абсолютная температура; R – универсальная газовая постоянная; k0 – предэкспоненциальный множитель, мало зависящий от температуры.
уравнение Аррениуса часто представляют в логарифмической форме:
lnk = lnk0 – Е0 ⁄RT удобной для графического определения энергии активации. Энергию активации (энтальпию активации) можно вычислить по значениям константы скорости, измеренным при нескольких разных температурах. По экспериментальным данным строят график зависимости lnk от1 ⁄T тангенс угла наклона полученной прямой линии к оси Х равен (-Еа ⁄R) стр 257
Энергию активации можно также оценить, если известны константы скорости при двух температурах Т1и Т2. Тогда для каждой температуры можно записать
lnk1 = lnk0 – Е0 ⁄RT1
lnk2= lnk0 – Е0 ⁄RT2 вычитая из второго уравнения первое, получают:
lnk2 – lnk1 = (lnk0 – Е0 ⁄RT2) – (lnk0 – Е0 ⁄RT1)
отсюда: ln(k2 ⁄k1)= Еа (Т2–T1) ⁄RТ2Т1
выражение для энергии активации имеет вид:
Еа = RТ2Т1 ln(k2 ⁄k1) ⁄(Т2–T1) где Еа - Дж ⁄ моль
Энергия активации представляет собой избыток энергии (в расчете на 1 моль) по сравнению со средней энергией молекул при данной температуре, необходимый для того, чтобы реагирующие частицы могли вступить в химическую реакцию и определяется свойствами реагирующих частиц, их энергетическим состоянием. Чтобы написать уравнение Аррениуса в дифференциальной форме, дифференцируют логарифмическую форму по температурах и получают:
d lnk ⁄ dТ = Еа ⁄RТ2 чем больше энергия активации, тем быстрее увеличивается константа скорости реакции с возрастанием температуры.
В настоящее время разработаны две основные теории, объясняющие кинетику протекания элементарных реакций.
Теория активных столкновений. Эта теория базируется на двух общих положениях.:
-реакция осуществляется в момент столкновения двух молекул А и В;
-столкновение приводит к химическому превращению только в том случае, когда молекулы А и В обладают достаточно большим запасом энергии. Эта энергия необходима для преодоления сил отталкивания, проявляющихся при сближении любых валентно-насыщенных молекул. Если относительная скорость движения молекул А и В (вдоль линии, соединяющей центры) достаточно велика, молекулы могут сблизится до таких малых расстояний, на которых возможно перераспределение химических связей в реагентах.
В теории активированного комплекса для любой элементарной реакции предполагается, что начальная конфигурация атомов переходит в конечную в результате непрерывного изменения межъядерных расстояний.
Например в ходе элементарной реакции А + ВС→ АВ + С сближаются атомы А и В. Расстояние А-В (R1) уменьшается, а расстояние В-С (R2) увеличивается.
Установлено, что подобные реакции осуществляются с наименьшей затратой энергии, если атомы располагаются на одной линии, соединяющей их центры. Тогда ход реакции можно описать, использую всего два межъядерных расстояния R1 и R2. В процессе непрерывного изменения межъядерных расстояний всегда образуется промежуточная конфигурация А…В…С, в которой связь В-С уже ослаблена, но еще не полностью разорвана, а связь А-В уже начала образовываться. Такая конфигурация является критической для данной реакции. Продукты реакции могут появиться только при условии образования этой конфигурации, которая называется переходным состоянием или активированным комплексом.