
- •Основні одиниці виміру, що застосовуються в гідроекології
- •Глава 1. Гідросфера та її екологічна зональність
- •Загальна характеристика гідросфери
- •Запаси (розподіл) води в гідросфері
- •Екологічна зональність Світового океану та морів
- •1.3. Екологічна зональність континентальних водойм
- •1.4. Екологічна зональність річкових систем
- •2.1. Екосистема як структурно-функціональна складова біосфери
- •2.2. Угруповання гідробіонтів окремих екологічних зон водних екосистем
- •Глава 3 Бактерії і віруси
- •3.1. Бактерії
- •3.2. Віруси.
- •Глава 4. Водорості (Algae)
- •4.1. Екологічні форми водоростей
- •4.2. Синьозелені водорості (Cyanophyta)
- •4.3. Діатомові водорості (Bacillariophyta)
- •4.4. Зелені водорості (Chlorophyta)
- •4.5. Харові водорості (Charophyta)
- •4.6. Динофітові водорості (Dinophyta)
- •4.7. Криптофітові водорості (Cryptophyta)
- •4.8. Евгленофітові водорості (Euglenophyta)
- •4.9. Золотисті водорості (Chrysophyta)
- •4.10. Жовтозелені водорості (Xanthophyta)
- •4.11. Червоні водорості, або багрянки (Rhodophyta)
- •4.12. Бурі водорості (Phaeophyta)
- •4.13. Рафідофітові водорості (Raphydophyta)
- •Глава 5. Вищі водяні рослини
- •5.1. Загальна характеристика
- •5.2. Екологічні угруповання
- •Глава 6. Водяні безхребетні тварини
- •6.1. Найпростіші (Protozoa)
- •6.2. Губки (Porifera)
- •6.3. Кишковопорожнинні (Coelenterata)
- •Плоскі черви (Plathelminthes). Турбелярії (Turbellaria )
- •6.6. Круглі черви, або первиннопорожнинні (Nemathelminthes). Нематоди (Nеmatoda) і коловертки (Rotatoria)
- •6.8. Водяні членистоногі (Arthropoda)
- •6.9. Молюски (Mollusca)
- •6.10. Щупальцеві, або червоподібні, організми (Tentaculata, або Vermoidea)
- •6.11. Щетинкощелепні, або морські стрілки (Chaetognatha)
- •6.12. Голкошкірі (Echinodermata)
- •Глава 7. Рибоподібні та риби (Pisces)
- •7.1. Екологічні особливості формування іхтіофауни
- •7.2. Рибоподібні
- •7.3. Хрящові риби (Chondrichthyes)
- •7.4. Хрящові ганоїди (Chondrostei)
- •7.5. Справжні кісткові риби (Teleostei)
- •Глава 8. Динаміка водних мас та її роль у водних екосистемах
- •8.1. Водні маси як компонент гідрологічної структури водойм і водотоків
- •8.2. Типізація водних об'єктів та їх гідрологічна характеристика
- •8.3. Роль течій у формуванні структури біоценозів та функціонуванні водних екосистем
- •Глава 9. Гідрофізичні фактори у водних екосистемах
- •9.1. Фізико-хімічні властивості води та їх екологічне значення
- •9.2. Термостабільні властивості води
- •9.3. Щільність води
- •9.4. В'язкість води і поверхневий натяг
- •9.5. Забарвлення води
- •9.6. Температурний та термічний режим водних об'єктів
- •9.7. Льодовий режим
- •9.8. Світло та його роль у функціонуванні водних екосистем
- •9.9. Седиментація, осадоутворення та формування донних ґрунтів
- •9.10. Роль гідрофізичних факторів у життєдіяльності гідро біонтів
- •Глава 10. Сольовий склад вод та адаптація до нього гідробіонтів
- •10.1. Класифікація природних вод за сольовим складом
- •10.2. Сольовий склад океанічних і морських вод
- •10.3. Сольовий склад континентальних вод
- •Класифікація якості поверхневих вод суші та естуаріїв за критеріями іонного складу [34]
- •10.4. Евригалінні і стеногалінні гідробіонти
- •10.5. Осмотичні фактори середовища та осморегуляція у гідробіонтів
- •10.6. Адаптація гідробіонтів до водно-сольових умов середовища
- •Глава 11 Іонні компоненти та їх екологічна роль
- •11.1. Неорганічні елементи океанічних, морських і прісних вод
- •11.2. Натрій, калій і цезій у водних екосистемах
- •11.3. Кальцій у водних екосистемах
- •Метаболічна роль кальцію та шляхи його надходження в організм гідробіонтів
- •11.4. Магній у морських і континентальних водах
- •11.5. Сірка природних вод та процеси сульфатредукції
- •Глава 12. Мікроелементи водних екосистем та їх біологічна роль
- •12.1. Гідробіонти як біоконцентратори мікроелементів
- •Вміст заліза у воді (мкг/дм3) і донних відкладеннях (г на 1 кг сухої маси) водойм Дністра і
- •Роль заліза у ферментативних реакціях та процесах дихання гідробіонтів
- •Вміст міді у воді (мкг/дм3) і одних відкладеннях (мг на 1 кг сухої маси) деяких водних водних об'єктів України [31, 73, 74]
- •12.4. Марганець
- •12.5. Цинк
- •Вміст цинку у воді (мкг/дм3) і донних відкладеннях (мг на 1 кг сухої маси) деяких водних об'єктів України [31, 73, 74]
- •12.6. Кобальт
- •12.7. Кадмій, хром, алюміній
- •Вміст хрому у воді (мкг/дм3) і донних відкладеннях (мг на 1 кг сухої маси) деяких водних об'єктів України [73, 74]
- •Глава 13 Кисень гідросфери та його роль у водних екосистемах
- •13.1. Кругообіг. Формування кисневого режиму
- •13.2. Розкладання органічних речовин та формування якості води
- •13.3. Роль кисню у життєдіяльності гідробіонтів.
- •13.4. Особливості використання гідробіонтами кисню з води
- •Глава 14. Діоксид вуглецю у водних екосистемах
- •14.1. Хімічні та біологічні перетворення
- •Відносна об'ємна розчинність газів у воді (долі одиниць) при парційному тиску 1 атм
- •Молярна частина, %, окремих форм вугільної кислоти у воді залежно від її рН
- •14.2. Фіксація автотрофними і гетеротрофними організмами. Фотосинтез.
- •14.3. Адаптація риб до змін вмісту діоксиду вуглецю у воді
- •15.1. Кругообіг азоту в біосфері
- •15.2. Азотфіксація у водних екосистемах
- •15.3. Засвоєння азоту в біосинтетичних процесах водоростей
- •15.4. Алохтонний і автохтонний азот водних екосистем
- •15.5. Амоніфікація, нітрифікація і денітрифікація та їх роль у кругообігу азоту у водних екосистемах
- •16.1. Неорганічний та органічний фосфор водних екосистем
- •16.2. Вміст фосфору в організмах гідробіонтів і його метаболічна роль
- •17.1. Загальне уявлення про популяцію
- •17.2. Статево-вікова структура популяцій
- •17.3. Внутрішньопопуляційна різноякісність
- •17.4. Внутрішньопопуляційні взаємини гідробіонтів
- •17.5. Чисельність та біомаса популяцій гідробіонтів. Методи їх встановлення
- •17.6. Регуляція чисельності популяції
- •17.7. Функціональні та інформаційні зв'язки в популяціях гідробіонтів
- •17.8. Щільність популяції гідробіонтів
- •Глава 18. Гідробіоценози як біологічні системи гідросфери
- •18.1. Загальна характеристика гідробіоценозів
- •18.2. Видова різноманітність гідробіоценозів
- •18.3. Гідробіоценози перехідних екологічних зон (екотопів)
- •18.4. Структура гідробіоценозів
- •18.6. Роль вищих хребетних тварин у біологічних процесах водних екосистем
- •19.1. Біологічна продукція та потік енергії у водних екосистемах
- •19.2. Деякі положення продукційної гідроекології
- •19.3. Методи визначення первинної продукції
- •19.4. Методи визначення вторинної продукції
- •19.5. Розрахунки потенційної і промислової рибопродуктивності
- •Глава 20 Органічне забруднення
- •20.1. Органічні речовини та їх кругообіг у водних екосистемах
- •20.2. Сапробність водних об'єктів
- •20.3. Самозабруднення та самоочищення водойм
- •Глава 21. Евтрофікація, її причини і наслідки для водних екосистем
- •21.1. Природна і антропогенна евтрофікація
- •21.2. «Цвітіння» води як гідробіологічний процес, зумовлений евтрофікацією
- •Глава 22. Токсичне забруднення та його наслідки для водних екосистем
- •22.1. Джерела токсичного забруднення
- •22.2. Реакція гідробіонтів на токсичні впливи
- •22.3. Гідротоксикометрія
- •22.4. Фактори, що впливають на токсичність хімічних речовин для гідробіонтів
- •22.5. Методи оцінки і контролю токсичності водного середовища для гідробіонтів
- •22.6. Фізіолого-біохімічні механізми дії токсикантів на водяні організми
- •Реакція гідробіоти на токсичну дію хімічних речовин у природних умовах
- •22.8. Біологічна індикація та моніторинг токсичних забруднень водних екосистем
- •22.9. Біологічна детоксикація та буферність водних екосистем
- •22.10. Нормування рівня токсичного забруднення
- •Глава 23. Радіонуклідне забруднення водних екосистем та його вплив на гідробіонтів.
- •23.1. Природна радіоактивність водних об'єктів
- •23.2. Радіаційне опромінення гідробіонтів природними джерелами іонізуючої радіації
- •23.3. Забруднення водних об'єктів штучними радіонуклідами
- •23.4. Забруднення водних об'єктів у Чорнобильській радіонуклідній аномалії
- •23.5. Форми радіонуклідів у природних водах
- •23.6. Розподіл та міграція радіонуклідів у водних екосистемах
- •23.7. Накопичення радіонуклідів у організмах гідробіонтів
- •23.8. Вплив радіонуклідного забруднення на гідробіонтів
- •Глава 24. Якість води
- •24.1. Екологічні та водогосподарські підходи до визначення якості води
- •24.2. Фактори, що впливають на сольовий склад вод як життєвого середовища гідробіонтів
- •24.3. Вплив внутрішньоводоймних процесів на якість води
- •24.4. Методи оцінки якості природних вод
- •Класи та категорії якості поверхневих вод суші та естуаріїв України за екологічною класифікацією [21]
- •24.5. Картографування екологічного стану поверхневих вод
- •25.1. Загальна гідрографічна характеристика
- •Структура річкової мережі України [20]
- •25.2. Геоморфологічні та ландшафтні особливості території України, що визначають формування річкової мережі
- •Глава 26. Екологія дніпровських водосховищ
- •26.1. Морфометпрична та гідрологічна характеристика зарегульованої частини Дніпра
- •Характеристика водосховищ Дніпровського каскаду [90]
- •26.2. Особливості формування екосистем
- •26.3. Основні угруповання водоростей та їх роль в екосистемах
- •26.4. Бактеріальне населення
- •26.5. Угруповання вищих водяних рослин в екосистемах
- •26.6. Основні угруповання тваринного населення
- •26.7. Забруднення, водосховищ і його вплив на формування якості води та рибопродуктивність Дніпра.
- •Глава 27. Екологія української частини басейну Дунаю
- •27.1. Загальна гідролого-гідрохімічна характеристика екосистеми Кілійської дельти
- •Вміст деяких важких металів у воді Кілійської дельти Дунаю, мкг/дм3 [74]
- •27.2. Біота Кілійської дельти
- •27.3. Басейни приток Дунаю, що стікають з Українських Карпат
- •Глава 28. Екологія Дністра
- •Гідрографічна характеристика, водність якість води
- •28.2. Угруповання гідробіонтів різних екологічних зон Дністра
- •28.3. Вплив зарегулювання на екологічний стан Дністра
- •29.1. Гідрологічний та гідрохімічний режим річки
- •29.2. Біота Південного Бугу
- •29.3. Вплив енергокомплексів на водні екосистеми
- •Глава 30. Екологія Сіверського Дінця
- •30.1. Гідрографічна мережа та водний стік ріки
- •30.2. Гідрохімічний режим та формування якості води
- •30.3. Біота Сіверського Дінця
- •Глава 31. Екологія Західного Бугу
- •Глава 32. Екологічні особливості малихрічок
- •32.1. Формування водного стоку та якості води малих річок
- •32.2. Вплив сільськогосподарського освоєння земель на екосистеми малих річок.
- •32.3. Вплив промислових підприємств та міських конгломератів на стан малих річок
- •33.1. Загальна характеристика озер України
- •33.2. Екосистема Шацьких озер
- •Глава 34. Екологічні особливості боліт
- •34.1. Загальна характеристика
- •34.2. Гідробіонти болотних екосистем
- •Глава 35. Стави рибогосподарського призначення
- •35.1. Загальна характеристика
- •35.2. Гідрохімічний режим ставів
- •35.3. Гідробіологічний режим ставів рибогосподарського призначення
- •35.4. Ставкове рибництво
- •Глава 36. Екосистеми водойм-охолоджувачів енергетичних об'єктів
- •36.1. Загальна характеристика
- •Водойми-охолоджувачі теплових і атомних електростанцій України [23]
- •36.2. Гідрохімічний режим водойм-охолоджувачів
- •36.3. Гідробіологічний режим водойм-охолоджувачів
- •36.4. «Теплове забруднення» (термофікація) водного середовища
- •36.5. Рибогосподарське використання водойм-охолоджувачів
- •Глава 37. Екосистеми каналів
- •37.1. Загальна характеристика каналів України
- •Основні магістральні канали України та їх призначення
- •37.2. Особливості гідрологічного режиму каналів та їх вплив на формування гідро біоценозів
- •37.3. Гідробіоценози каналів
- •37.4. Формування якості води в каналах
- •Глава 38. Екосистеми причорноморських лиманів
- •38.1. Екосистеми відкритих лиманів
- •Характеристика відкритих причорноморських лиманів
- •38.2. Екосистеми закритих лиманів
- •Характеристика закритих лиманів Дунай-Дністровського межиріччя
- •Показники зовнішнього водообміну закритих лиманів [88]
- •38.3. Біологічні ресурси лиманів та їх народногосподарське значення
- •Глава 39. Екосистема Чорного моря
- •39.1. Водний баланс і якість води
- •39.2. Газовий режим
- •39.3. Рослинний і тваринний світ
- •39.4. Іхтіофауна і рибний промисел
- •39.5 Проблеми екологічного оздоровлення Чорного моря
- •Глава 40. Екосистема Азовського моря
- •40.1. Формування водного балансу
- •Середній багаторічний водний баланс Азовського моря (1923—1976 pp.)
- •Зміни річкового стоку в Азовське море під впливом господарської діяльності при середніх кліматичних умовах [38]
- •40.2. Гідрохімічний режим
- •Щорічний баланс азоту і фосфору в Азовському морі, тис. Т [38]
- •40.3. Флора і фауна
- •40.4. Іхтіофауна Азовського моря
- •40.5. Вплив антропогенного навантаження на екосистему Азовського моря
- •Глава 41. Законодавче регулювання водоохоронної діяльності
Метаболічна роль кальцію та шляхи його надходження в організм гідробіонтів
Кальцій відіграє важливу роль у формуванні кісткового скелету, регуляції проникності клітинних мембран. Йому належить важлива роль у функціонуванні нервової, м'язової і залозистих тканин, синаптичній передачі, молекулярном механізмі м'язевих скорочень, у ферментативних реакціях, пов'язаних з процесами тканинного дихання і гліколізу.
Близько 1,5 млрд т його солей, що надходять в моря ; океани з річковим стоком, засвоюються у процесі життєдіяльності гідробіонтами. При цьому більшість морських і прісноводних організмів можуть накопичувати і концентрувати кальцій в окремих органах і тканинах.
Основним джерелом кальцію для безхребетних є кальцій води, оскільки ці організми можуть його утилізувати безпосередньо з водного середовища. Встановлено, що протягом 74 днів звичайний ставковик (Limnaea stagnalis) може утилізувати з води до 80 % кальцію. Інтенсивність використання кальцію залежить як від його вмісту у воді, так і від її загальної мінералізації. У м'якій воді ці молюски отримують з води лише 30 %, а з кормом -70 % кальцію, що надходить в організм. У збагаченій кальцієм воді ці джерела відіграють однакову роль.
Карбонати кальцію практично не засвоюються водяними рослинами і тваринами. Деякі водяні рослини в процесі фотосинтезу можуть істотно впливати на карбонатно-кальцієву рівновагу водойм, обумовлюючи тим самим випадіння карбонату кальцію в осад. У період інтенсивного фотосинтезу, в сонячні літні дні можна спостерігати, що на листках елодеї, рдесника блискучого та інших водяних рослин осідає у вигляді інкрустації карбонат кальцію. Найбільше вищі водяні рослини утилізують з води кальцію в період їх вегетації. Так, при повітряно-сухій фітомасі 40 т/га очерет звичайний утилізує до 200 кг/га кальцію. У заростях елодеї протягом 10 год світлової частини доби випадає в осад до 2 кг сполук кальцію на 100 кг сухої маси. Наведені дані свідчать про важливу роль вищих водяних рослин не тільки в процесах утилізації, але й у кругообігу кальцію в гідросфері. Слід, однак, зазначити, що при всій важливості кальцію для нормального розвитку рослин його надмірне надходження у водойми може спричинити збіднення флори. Так, у водоймах, розташованих поблизу виробництв з переробки мармуру, поряд із значним підвищенням вмісту кальцію у воді спостерігається деградація фітоценозів.
Особливо важливу роль відіграє кальцій у метаболічних процесах безхребетних, які можуть утилізувати Са2+ безпосередньо з води. Так, у креветок поглинається зябрами до 90 % кальцію, що надходить в їх організм. Прісноводні молюски засвоюють більшу частину кальцію, який іде на побудову 3 пепашки, безпосередньо з води за допомогою спеціальних літин мантії. Цим шляхом молюски можуть утилізувати до 80—90 % кальцію, і лише 10—20 % вони отримують за рахунок надходження з кормом. У молюсків, які живуть у воді з низьким вмістом кальцію, це співвідношення різко змінюється на користь кормових надходжень. Важливе значення для життєдіяльності безхребетних має не тільки вміст кальцію у воді, але і його співвідношення з іншими катіонами, зокрема, натрієм і калієм.
На відміну від хребетних тварин, у яких обмін кальцію в опірних тканинах більш тісно пов'язаний з обміном фосфору, для безхребетних характерним є утворення карбонатних сполук кальцію, які використовуються для побудови панцира. В той же час фосфор відіграє важливу роль у засвоєнні кальцію організмом. Висока інтенсивність обміну кальцію у безхребетних визначає і їх вимоги до екологічних умов середовища. Встановлено, що молюски уникають водойм, в яких вміст кальцію у воді менший від 2 мг/дм3, а ракоподібні можуть нормально розвиватись при дещо меншій його концентрації — 1,7 мг/дм3. В умовах антропогенного впливу на водні екосистеми, яке супроводжується значним зменшенням концентрації кальцію (на фоні зростання у воді вмісту інших елементів), видове різноманіття і чисельність безхребетних різко знижується. В той же час збагачення води солями кальцію до оптимальних значень позитивно впливає на їх розвиток, зокрема у молюсків збільшується не тільки черепашка, але й питома вага м'яких тканин.
Прісноводні молюски можуть витримувати вищі концентрації кальцію у воді, ніж морські. Так, Anodonta cygnea може протягом тривалого часу жити у воді з концентрацією кальцію 400—500 мг/дм3. Основою високих адаптивних можливостей молюсків щодо значного зростання концентрації кальцію у воді є фізіолого-біохімічні механізми, які забезпечують швидкий перехід від тканинного дихання до гліколізу. Важливу роль відіграє і можливість генерації нервових імпульсів у безнатрієвому середовищі, яке містить лише іони кальцію. Завдяки такому механізмові забезпечується висока ефективність нервової регуляції мембранних процесів організмі.
Риби, як і безхребетні, можуть утилізувати кальцій тільки з корму, але й безпосередньо з води. У молоді короп 68 — 88 % кальцію проникає в організм через зябра і лише 12 — 36 % - через шкіру. У дзеркальних коропів, тіло яких не вкрите лускою, через шкіру проникає 31 % кальцію через зябра - 69 %, тоді як у риб, які мають луску, через шкіру утилізується близько 12 %, а через зябра — 88 %. у форелі через залозистий апарат зябер і шкірні покриви надходить в організм 75 % кальцію з води і 25 % з кормом.
Відмічені особливості надходження кальцію в організм риб відіграють важливу роль в регуляції фізіолого-біохімічних процесів. На відміну від наземних тварин у риб абсорбований залозистими клітинами зябер кальцій з током крові відразу розноситься по всьому організму. При такому шляху надходження кальцію в організм гепатопанкреас як внутрішній фільтр організму не відіграє такої важливої гомеостатичної ролі, як у теплокровних тварин. У зв'язку з цим у риб більш розвинутий механізм тканинного депонування кальцію. При підвищенні концентрації розчиненого у воді кальцію від 100 до 200 мг/дм3 у мітохондріях залозистих клітин зябер уже протягом 24 год його вміст зростає від 9,0 до 13,3 мкг/г білка. Із збільшенням накопичення кальцію в мітохондріях різко підвищується вміст як загального, так і неорганічного фосфору.