
- •Билет №1.
- •2. Функции системы сбора и подготовки скважинной продукции.
- •3. Причины обводнения нефтедобывающих скважин.
- •Билет №2.
- •1. Способы регулирования подачи и напора уэцн.
- •2 . Основные элементы системы сбора скважинной продукции нефтяных месторождений.
- •3. Назначение систем поддержания пластового давления.
- •Билет №3.
- •1. Способы регулирования подачи ушсн.
- •2. Схема двухтрубной системы сбора нефти.
- •3. Коэффициенты обводненности и водонасыщенности. Методы их определения.
- •Билет №4
- •1. Технология проведения и назначение динамометрирования ушсн.
- •2 . Схема однотрубной системы сбора нефти.
- •3. Влияние анизотропии коллектора на образование конусов подошвенной воды.
- •Билет №5.
- •1. Причины снижения загрузки погружного электродвигателя уэцн.
- •2. Система сбора и транспорта нефти в горной местности.
- •3. Область применения нефтедобывающих скважин с горизонтальными окончаниями.
- •Билет №6.
- •1. Метод подбора уэцн для нефтяных скважин.
- •2. Системы сбора нефти, газа и воды на морских месторождениях, расположенных вблизи берега.
- •3. Основные законы фильтрации жидкости в пористой среде.
- •Билет №7.
- •1. Технология глушения скважин.
- •2. Системы сбора нефти, газа и воды на морских месторождениях, расположенных вдали от берега.
- •3. Особенности разработки трещиновато-поровых коллекторов.
- •Билет №8.
- •1. Технологии предупреждения и удаления аспо в скважинах, оборудованных ушсн.
- •2 . Принципиальная схема Спутника-а.
- •3. Виды и назначение площадных систем заводнения.
- •Билет №9.
- •1. Область применения винтовых установок уэвн и ушвн.
- •2 . Принципиальная схема Спутника-в.
- •3. Виды и назначение рядных систем заводнения.
- •Билет №10.
- •1. Технологии предупреждения и удаления аспо в скважинах, оборудованных уэцн.
- •2. Классификация трубопроводов.
- •3. Основные виды внутриконтурного заводнения.
- •Билет №11.
- •1. Показатели использования фонда скважин.
- •2. Определение потерь напора на трение для всех режимов течения жидкостей.
- •3. Источники пластовой энергии.
- •Билет №12.
- •1. Виды гтм, применяемых на нагнетательных скважин.
- •2. Графоаналитический метод определения пропускной способности трубопроводов.
- •3. Режимы эксплуатации залежей.
- •Билет №13.
- •1. Виды несовершенства скважин и его учет.
- •2. Графоаналитический метод определения диаметра трубопровода.
- •3. Эксплуатация залежи в режиме растворенного газа.
- •Билет №14.
- •1. Технология исследования нагнетательных скважин.
- •2. Методы определения оптимального диаметра трубопровода.
- •3. Разработка нефтегазовых залежей с газовой шапкой.
- •Билет №15.
- •1. Методы снижения пусковых давлений газлифтных скважин.
- •2. Схемы газосборных коллекторов.
- •3. Виды неоднородности коллекторов.
- •Билет №16.
- •1. Параметры, контролируемые при выводе скважин на режим.
- •2. Состав и структура солеотложений в системе сбора скважинной продукции.
- •3. Зоны разделы фаз в нефтегазовых залежах с краевыми водами.
- •Билет №17.
- •1. Особенности насосной добычи нефтей с большим газосодержанием.
- •2. Методы удаления солеотложений в системе сбора скважинной продукции.
- •3. Методы определения кин.
- •Билет №18.
- •1. Определение коэффициента подачи ушсн.
- •2. Состав и классификация аспо в системе сбора скважинной продукции.
- •3. Критерии выбора объектов для проведения грп.
- •Билет №19.
- •1. Газлифтная эксплуатация скважин.
- •2. Основные факторы образования аспо в системе сбора скважинной продукции.
- •3. Технологии регулирования разработки нефтяных месторождений.
- •Билет №20.
- •1. Виды и технологии гидродинамических исследований скважин с уэцн.
- •2. Технологии предотвращения и борьбы с аспо в системе сбора скважинной продукции.
- •3. Технология и назначение форсированных отборов нефти.
- •Билет №21.
- •1. Коэффициент подачи ушсн.
- •2. Виды коррозии в системе сбора скважинной продукции.
- •3. Назначение и область применения потокоотклоняющих технологий.
- •Билет №22.
- •1. Оптимизация режимов работу уэцн.
- •2. Факторы коррозионного воздействия на трубопровод.
- •2. Содержание кислорода в воде
- •3. Парциальное давления со2
- •4. Минерализация воды
- •5. Давление
- •3. Методика определения технологической эффективности гтм.
- •Билет №23.
- •1. Недостатки газлифтной эксплуатации.
- •2. Защита трубопроводов от внутренней коррозии.
- •3. Особенности разработки нефтяных месторождений с недонасыщенными коллекторами.
- •Билет №24.
- •1. Достоинства газлифтной эксплуатации.
- •2. Защита трубопроводов от внешней коррозии.
- •3. Технология и область применения барьерного заводнения.
- •Билет №25.
- •1. Методы регулирования работы скважин с ушсн.
- •2. Основные факторы, вызывающие пульсацию и влияющие на их величину и частоту.
- •3. Особенности геологического строения разработки нефтегазовых залежей.
- •Билет №26.
- •1. Назначение и технологии проведения кислотных обработок добывающих скважин.
- •2. Схема предварительного разгазирования нефти. Понятие сепарации и ступеней сепарации.
- •3. Классификация месторождений по величине извлекаемых запасов.
- •Билет №27.
- •1. Назначение и технология проведения гди.
- •2. Назначение сепараторов.
- •3. Технологии разработки многопластовых месторождений.
- •Билет №28.
- •1. Технологии управления продуктивностью скважин.
- •2. Классификация сепараторов.
- •3. Методы определения типа залежи по составу углеводородов и их относительной плотности.
- •Билет №29.
- •1. Методы обоснования способов эксплуатации скважин.
- •1. Величина пластового давления:
- •2. Коэффициент
- •4. Фильтрационные характеристики призабойной зоны (коэффициенты подвижности и гидропроводности).
- •5. Имеющиеся в распоряжении технические средства снижения забойного давления.
- •2. Методы определения эффективности работы сепаратора.
- •3. Технологии интенсификации разработки нефтяных месторождений.
- •Билет №30.
- •1. Технологии освоения нагнетательных скважин.
- •3. Технологии регулирования разработки нефтяных месторождений.
- •Билет №31.
- •1. Технологии вторичного вскрытия пластов.
- •2. Конструкция гидроциклонного сепаратора.
- •3. Категории запасов нефти.
- •Билет №32.
- •1. Методы интерпретации квд и определяемые по ним параметры.
- •2. Конструкция совмещенной установки разделения скважиной продукции.
- •3. Характеристика и методы определения стадий разработки нефтяных месторождений.
- •Билет №33.
- •1. Теплофизические методы воздействия на пзп.
- •Билет №34.
- •2. Скорость осаждения при ламинарном режиме.
- •3. Последовательность разработки и назначение проектных документов на разработку нефтяных месторождений.
- •Билет №35.
- •1. Назначение, технология проведения и интерпретация результатов гидропрослушивания.
- •2. Схема глобул воды в нефти. Типы эмульсий.
- •3. Назначение и технология проведения трассерных исследований нефтяных месторождений.
- •Билет №36.
- •1. Схемы оборудования устья добывающих скважин.
- •2. Классификация эмульсий в зависимости от плотности сред и содержания парафинов, смол и асфальтенов.
- •3. Методы подсчета запасов нефти и растворенного газа.
- •Билет №37.
- •1. Причины разрушения прискважинной зоны пласта при добыче нефти.
- •2. Технологии дегидратации нефти.
- •3. Особенности разработки нефтяных месторождений на завершающей стадии.
- •Билет №38.
- •1. Основные причины выхода из строя уэцн и методы борьбы с ними.
- •2. Факторы, влияющие на образование эмульсий.
- •3. Технологии совместной разработки многопластовых залежей.
- •Билет №39.
- •1. Виды и условия фонтанирования скважин.
- •2. Предотвращение образования стойких эмульсий.
- •3. Особенности разработки низкопроницаемых и неоднородных коллекторов.
- •Билет №40.
- •1. Технологии предупреждения образования солеотложений при эксплуатации скважин.
- •2. Основные методы разрушение эмульсий.
- •3. Технологии выработки остаточных запасов нефти.
- •Билет №41.
- •1. Назначение мини-грп
- •2. Технологии применения пав в качестве деэмульгаторов.
- •3. Задачи геофизических методов контроля за разработкой нефтяных месторождений.
- •Билет №42.
- •1. Этапы проведения грп.
- •2. Внутритрубная деэмульсация нефти.
- •3. Технологии разработки месторождений при анпд и авпд.
- •Билет №43.
- •1. Классификация плунжерных глубинных насосов.
- •1. По способу приведения в действие:
- •2. Принципиальная схема гравитационного осаждения.
- •3. Методы контроля за разработкой нефтяных месторождений.
- •Билет №44.
- •1. Основные способы заканчивания скважин.
- •2. Установка термической подготовки нефти.
- •3. Особенности разработки месторождений высоковязких нефтей.
- •Билет №45.
- •1. Влияние газа на работу шсну и методы его снижения.
- •2. Установка комплексной подготовки нефти.
- •3. Основные теории фильтрации жидкости в пористой среде.
- •Билет №46.
- •1. Назначение и технология проведения термометрических исследований скважин.
- •2. Принципиальные схемы отстойных аппаратов различного типа.
- •3. Категории скважин.
- •Билет №47.
- •1. Периодическая эксплуатация уэцн.
- •2. Схема работы гидравлического предохранительного клапана и устройство дыхательного клапана.
- •3. Методы определения исходных параметров залежи для гидродинамических расчетов.
- •Билет №48.
- •1. Ликвидация скважин.
- •2. Схемы подогревателей нефти и печей.
- •3. Методы построения гидродинамических моделей нефтяных месторождений.
- •Билет №49.
- •1. Определение параметров пласта по данным исследования скважин.
- •2 . Электродегидраторы, конструкция, область применения.
- •3. Методы контроля за ппд.
- •Билет №50.
- •1. Технологии определения профиля притока и профиля приемистости.
- •2. Схемы совмещенных аппаратов.
- •3. Прогнозирование показателей разработки по фактическим данным с помощью характеристик вытеснения.
- •Билет №51.
- •1. Схема уэцн и назначение узлов.
- •2. Схема расположения оборудования на наземном вертикальном цилиндрическом резервуаре.
- •3. Постоянно действующие геолого-гидродинамические модели.
- •Билет №52.
- •1. Причины и технологии консервации скважин.
- •2. Схема работы гидравлического предохранительного клапана и устройство дыхательного клапана.
- •3. Правовые условия разработки нефтяных месторождений.
- •Билет №53.
- •1. Классификация методов интенсификации притока.
- •2. Огневой предохранитель. Устройство и принцип действия.
- •3. Основные типы нефтегазовых залежей.
- •Билет №54.
- •1. Осложнения, возникающие при работе скважин, оборудованных шсну.
- •2. Методы снижения потерь углеводородов при испарении нефти в резервуарах.
- •3. Функция Бакли-Леверетта. Расчет непоршневого вытеснения нефти водой.
- •Билет №55.
- •1. Причины снижения производительности уэцн.
- •2. Схема газоуловительной системы с газосборником.
- •3. Типы моделей пластов (объектов разработки).
- •Билет №56.
- •1. Фонтанная эксплуатация нефтяных скважин.
- •2. Назначение установок подготовки воды упсв.
- •3. Закачка в пласты водных растворов пав, полимеров, щелочей, кислот, мицеллярных растворов.
- •Билет №57.
- •1. Системы защиты уэцн от солеотложений.
- •3. Термические методы увеличения нефтеотдачи.
- •Билет №58.
- •1. Регулирование работы фонтанных скважин.
- •2. Схема резервуара – флотатора.
- •3. Методы подсчета запасов нефтяного месторождения.
- •1)Метод материального баланса
- •2) Статистический метод (метод кривых)
- •3)Объемный метод
- •Билет №59.
- •1. Способы эксплуатации скважин на завершающей стадии разработки месторождений.
- •2. Схемы водозаборов.
- •3. Методы утилизации попутного нефтяного газа.
- •Билет №60.
- •1.Движение газожидкостных смесей в вертикальных трубах.
- •2.Схема улавливания легких фракций углеводородов.
- •3.Особенности разработки нефтяных оторочек.
2. Схемы подогревателей нефти и печей.
1
.Путевые
подогреватели (с жаровыми трубами)
1-корпус; 2-жаровые трубы; 3-горелки форсуночного типа;
2
.Печи
1-корпус
2-змеевик
3-дымовая труба
4-горелки
3. Методы построения гидродинамических моделей нефтяных месторождений.
Гидродинамическая модель месторождения –– это математическая модель, воспроизводящая физические процессы в месторождении нефти или газа при его разработке. Математическая модель представляет собой систему дифференциальных уравнений в частных производных сохранения массы, импульса и энергии. Для решения систем дифф. уравнений применяют численные методы основанные на конечно – разностном представлении производных.
Цифровые фильтрационные модели являются средством математического моделирования процессов в коллекторах. В численных моделях область моделирования представляется в виде конечного числа ячеек, взаимодействие между которыми рассчитывается численными методами. Современные фильтрационные модели – это комплекс программ гидродинамического моделирования, подготовки исходных данных, обработки и анализа результатов.
Моделирование пласта является сложной и дорогостоящей процедурой. Несмотря на то, что оно быстро становится популярным методом для принятия решения о разработке коллектора, его следует рассматривать как одни из вариантов из набора методов, имеющихся в распорящении инженера-разработчика.
Все методы моделирования могут быть разделены на:
Аналитические методы, например, поведение притока, материальный баланс, поведение вертикального подъема, образование водяных конусов
Цифровые имитационные модели
Когда анализируется только часть производственной системы, лучше всего применять аналитические методы. Однако они имеют свои недостатки:
Нелинейные величины в уравнениях потока игнорируются
Геометрия пласта упрощается
Предполагаются однородные и изотропные свойства пласта
Предполагается упрощенное распределение флюидов или единственная фаза.
Имитационные модели пласта представляют его в виде сетки блоков вплоть до пространственного вида. Каждому блоку предписаны свойства пласта и флюидов (пористость, проницаемость, капиллярное давление и т.д.). Эти свойства являются усредненными величинами для блока сетки, поэтому разрешающая способность определения пласта ограничивается размером блока. Для общей имитации температурный эффект не моделируется: предполагается изотермический процесс.
Билет №49.
1. Определение параметров пласта по данным исследования скважин.
В течение периода эксплуатации скважины проводится значительное количество ее исследований. Цель исследования скважин заключается в определении ее продуктивности, получении данных о строении и свойствах продуктивных пластов, оценке технического состояния скважин. Существуют следующие методы исследований скважин и пластов: гидродинамические, дебитометрические, термодинамические и геофизические.
Гидродинамические исследования:
- исследования скважин при установившихся отборах (снятие индикаторных диаграмм (ИД));
- исследование скважин при неустановившихся режимах (снятие КВД и КПД);
- исследование скважин на взаимодействие (гидропрослушивание).
Сущность метода исследования на установившихся режимах заключается в многократном изменении режима работы скважины и, после установления каждого режима, регистрации дебита и забойного давления. По результатам исследований снимают ИД и определяют коэффициент продуктивности и его динамику. При дальнейшей обработки исследований дополнительно определяют коэффициент проницаемости ПЗП, подвижность нефти в ПЗП, гидропроводность ПЗП и др.
Исследование скважин на неустановившихся режимах заключается в прослеживании скорости подъема уровня жидкости в насосной скважине после ее остановки и скорости восстановления забойного давления после остановки фонтанной скважины (снятие КВД). Таким же образом можно исследовать и нагнетательные скважины, регистрируя скорость падения давления на устье после ее остановки (снятие КПД). По полученным данным определяют коэффициент проницаемости пласта, подвижность нефти в пласте, гидропроводность пласта, пьезопроводность пласта в зоне дренирования скважины, а также скин-эффект (степень загрязнения ПЗП).
По результатам гидропрослушивания выявляют характер гидродинамической связи между залежью нефти и законтурной областью или связь между пластами
Дебитометрические исследования. Сущность метода исследований профилей притока и поглощения заключается в измерении расходов жидкостей и газов по толщине пласта. Скважинные приборы, предназначенные для измерения притока жидкости и газа (дебита) называются дебитомерами, а для измерения поглощения (расхода) – расходомерами. Кроме своего основного назначения, скважинные дебитомеры и расходомеры используют и для установления затрубной циркуляции жидкости, негерметичности и мест нарушения эксплуатационной колонны, перетока жидкости между пластами.
Термодинамические исследования основаны на сопоставлении геотермы и термограммы действующей скважины. Геотерма снимается в простаивающей скважине и дает представление о естественном тепловом поле Земли. Термограмма фиксирует изменение температуры в стволе скважины. С помощью данных исследований можно определить интервалы поглощающих и отдающих пластов, а также использовать полученные результаты для: определения затрубной циркуляции; перетока закачиваемой воды и места нарушения колонны; определения высоты подъема цементного раствора за колоннами после их цементирования.
Геофизические исследования скважин включают в себя различные виды каротажа электрическими, магнитными, радиоактивными акустическими и другими методами с целью определения характера нефте-, газа- и водонасыщенности пород, контроля за техническим состоянием скважин, определения источников обводнения и эффективности проводимых ГТМ.