
- •6.080401 “Інформаційні управляючі системи та технології”
- •6.080402 “Інформаційні технології проектування”
- •6.080401 “Інформаційні управляючі системи та технології” 1
- •Розділ 1 Основні концепції операційних систем
- •1.1 Поняття операційної системи, ії призначення та функції
- •1.1.1 Поняття операційної системи
- •1.1.2 Призначення операційної системи
- •1.1.3 Операційна система як розширена машина
- •1.1.4 Операційна система як розподілювач ресурсів
- •1.2 Класифікація сучасних операційних систем
- •1.3 Функціональні компоненти операційних систем
- •1.3.1 Керування процесами і потоками
- •1.3.2 Керування пам’яттю
- •1.3.3 Керування введенням-виведенням
- •1.3.4 Керування файлами та файлові системи
- •1.3.5 Мережна підтримка
- •1.3.6 Безпека даних
- •1.3.7 Інтерфейс користувача
- •Розділ 2 Архітектура операційних систем
- •2.1 Базові поняття архітектури операційних систем
- •2.1.1 Ядро системи. Привілейований режим і режим користувача
- •2.2 Реалізація архітектури операційних систем
- •2.2.1 Монолітні системи
- •2.2.2 Багаторівневі системи
- •2.2.3 Системи з мікроядром
- •2.2.4 Концепція віртуальних машин
- •2.3 Особливості архітектури: unix і Linux
- •2.3.1 Базова архітектура unix
- •2.3.2 Архітектура Linux
- •Розділ 3 Керування процесами і потоками
- •3.1 Базові поняття процесів і потоків
- •3.1.1 Процеси і потоки в сучасних ос
- •3.1.2 Моделі процесів і потоків
- •3.1.3 Складові елементи процесів і потоків
- •3.2 Стани процесів і потоків
- •3.3 Опис процесів і потоків
- •3.3.1 Керуючи блоки процесів і потоків
- •3.3.2 Образи процесу і потоку
- •3.4 Створення і завершення процесів і потоків
- •3.4.1 Створення процесів
- •3.4.2 Керування адресним простором під час створення процесів
- •3.4.3 Особливості завершення процесів
- •3.4.4 Синхронне й асинхронне виконання процесів
- •3.4.5 Створення і завершення потоків
- •3. 5 Керування процесами в unix і Linux
- •3. 5. 1 Образ процесу
- •3. 5. 2 Ідентифікаційна інформація та атрибути безпеки процесу
- •3. 5.3 Керуючий блок процесу
- •3. 5. 4Створення процесу
- •3. 5. 5 Завершення процесу
- •3. 5. 6 Очікування завершення процесу
- •3. 5. 7 Сигнали
- •3.6 Керування потоками в Linux
- •3. 6. 1 Базова підтримка багатопотоковості
- •3. 6. 2 Потоки ядра Linux
- •3. 6. 2 Програмний інтерфейс керування потоками Створення потоків
- •Очікування завершення виконання потоків
- •Висновки
- •Розділ 4 Планування процесів і потоків
- •4. 1 Загальні принципи планування
- •4. 1. 1 Особливості виконання потоків
- •4. 1.2 Механізми і політика планування
- •4. 1. 3 Застовність принципів планування
- •4. 2 Види планування
- •4. 2. 1 Довготермінове планування
- •4. 2. 2 Середньотермінове планування
- •4. 2. 3 Короткотермінове планування
- •4. 3 Стратегії планування. Витісняльна і невитісняльна багатозадачність
- •4. 4 Алгоритми планування
- •4. 4. 1 Планування за принципом fifo
- •4. 4. 2 Кругове планування
- •4. 4. 3 Планування із приоритетами
- •4. 4. 4 Планування на підставі характеристик подальшого виконання
- •4. 4. 5 Багаторівневі черги зі зворотним зв’язком
- •4. 4. 6 Лотерейне планування
- •4. 5 Реалізація планування в Linux
- •4. 5. 1 Планування процесів реального часу в ядрі
- •4. 5. 2 Традиційний алгоритм планування
- •Умови виклику процедури планування
- •Процедура планування
- •Початок нової епохи
- •Розрахунок динамічного пріоритету
- •Перерахування кванта під час створення нового процесу
- •4. 5. 3 Сучасні підходи до реалізації планування
- •4. 5. 4 Програмний інтерфейс планування
- •Висновки
- •Розділ 5 Взаємодія потоків
- •5. 1 Основні принципи взаємодії потоків
- •5. 2 Основні проблеми взаємодії потоків
- •5. 2. 1 Проблема змагання
- •5. 2. 2 Критичні секції та блокування Поняття критичної секції
- •Блокування
- •Проблеми із реалізацією блокувань
- •5. 3 Базові механізми синхронізації потоків
- •5. 3. 1 Семафори
- •Особливості використання семафорів
- •Реалязація задачі виробників-споживачів за допомогою семафорів
- •5. 3. 2 М’ютекси
- •Висновки
- •Розділ 6 Міжпроцесова взаємодія
- •6. 1 Види міжпроцесової взаємодії
- •6. 1. 1 Технологія відображуваної пам’яті (mapped memory)
- •Розділ 7 Керування оперативною пам’яттю
- •7. 1 Основи технології віртуальної пам’яті
- •7. 1. 1. Поняття віртуальної пам’яті
- •7. 1. 2. Проблеми реалізації віртуальної пам’яті. Фрагментація пам’яті
- •7. 1. 3. Логічна і фізична адресація пам’яті
- •7. 1. 4 Підхід базового і межового регістрів
- •7. 2 Сегментація пам’яті
- •7.2. 1. Особливості сегментації пам’яті
- •7.2.2. Реалізація сегментації в архітектурі іа-32
- •7. 3 Сторінкова організація пам’яті
- •7.3.1. Базові принципи сторінкової організації пам’яті
- •7.3.2. Порівняльний аналіз сторінкової організації пам’яті та сегментації
- •7.3.3. Багаторівневі таблиці сторінок
- •7.3.4. Реалізація таблиць сторінок в архітектурі іа-32
- •7.3.5. Асоціативна пам’ять
- •7. 4. Сторінково-сегментна організація пам’яті
- •7. 5. Реалізація керування основною пам’яттю: Linux
- •7.5.1. Використання сегментації в Linux. Формування логічних адрес
- •7.5.2. Сторінкова адресація в Linux
- •7.5.3. Розташування ядра у фізичній пам’яті
- •7.5.4. Особливості адресації процесів і ядра
- •7.5.5. Використання асоціативної пам’яті
- •Розділ 8 Логічна організація файлових систем
- •8. 1. Поняття файла і файлової системи
- •8.1.1. Поняття файла
- •8.1.2. Поняття файлової системи
- •8.1.3. Типи файлів
- •8.1.4. Імена файлів
- •8. 2. Організація інформації у файловій системі
- •8.2.1. Розділи
- •8.2.2. Каталоги
- •8.2.3. Зв’язок розділів і структури каталогів
- •Єдине дерево каталогів. Монтування файлових систем
- •8. 3. Зв’язки
- •8. 3. 1. Жорсткі зв’язки
- •8. 3. 2. Символічні зв’язки
- •Підтримка символічних зв’язків на рівні системних викликів
- •8. 4. Атрибути файлів
- •8. 5. Операції над файлами і каталогами
- •8. 5. 1. Підходи до використання файлів процесами
- •8. 5. 2. Загальні відомості про файлові операції
- •8. 5. 3. Файлові операції posix
- •Література
1.3 Функціональні компоненти операційних систем
Операційну систему можна розглядати як сукупність компонентів, кожен з яких відповідає за реалізацію певної функції системи. Розглянемо найважливіші функції сучасних ОС і компоненти, що їх реалізують.
Спосіб побудови системи зі складових частин та їхній взаємозв’язок визначає архітектура операційної системи.
1.3.1 Керування процесами і потоками
Як ми вже згадували, однією з найважливіших функцій ОС є виконання прикладних програм. Код і дані прикладних програм зберігаються в комп’ютерній системі на диску в спеціальних виконуваних файлах. Після того як користувач або ОС вирішать запустити на виконання такий файл, у системі буде створено базову одиницю обчислювальної роботи, що називається процесом (process).
Можна дати таке означення: процес – це програма під час її виконання.
Операціна система розподіляє ресурси між процесами. До таких ресурсів належать процесорний час, пам’ять, пристрої введення-виведення, дисковий простір у вигляді файлів. При розподілі пам’яті з
кожним процесом пов’язується його адресний простір – набір адрес пам’яті, до яких йому дозволено доступ. В адресному просторі зберігаються код і дані процесу. При розподілі дискового простору для кожного процесу формується список відкритих файлів, аналогічним чином розподіляють пристрої введення-виведення.
Процеси забезпечують захист ресурсів, якими вони володіють. Наприклад, до адресного простору процесу неможливо безпосередньо звернутися з інших процесів (він є захищеним), а при роботі з файлами може бути задано режим, що забороняє доступ до файла всім процесам, крім поточного.
Розподіл процесорного часу між процесами необхідний через те, що процесор виконує інструкції одну за одною (тобто в конкретний момент часу на ньому може фізично виконуватися тільки один процес), а для користувача процеси мають виглядати як послідовності інструкцій, виконувані паралельно. Щоб домогтися такого ефекту, ОС надає процесор кожному процесу на деякий короткий час, після чого перемикає процесор на інший процес; при цьому виконання процесів відновлюється з того місця, де їх було перервано. У багатопроцесорній системі процеси можуть виконуватися паралельно на різних процесорах.
Сучасні ОС крім багатозадачності можуть підтримувати багатопотоковість (multithredsng), яка передбачає в рамках процесу наявність кількох послідовностей інструкцій (потоків, threads), які для користувача виконуються паралельно, подібно до самих процесів в ОС. На відміну від процесів потоки не забезпечують захисту ресурсів (наприклад, вони спільно використовують адресний простір свого процесу).
1.3.2 Керування пам’яттю
Під час виконання програмного коду процесор бере інструкції й дані з оперативної (основної) пам’яті комп’ютера. При цьому така пам’ять відображається у вигляді масиву байтів, кожен з яких має адресу.
Як уже згадувалося, основна пам’ять є одним з видів ресурсів, розподілюваних між процесами. ОС відповідає за виділення пам’яті під захищений адресний простір процесу і за вивільнення пам’яті після того, як виконання процесу буде завершено. Обсяг пам’яті, доступний процесу, може змінюватися в ході виконання, у цьому разі говорять про динимічний розподіл пам’яті.
ОС повинна забезпечувати можливість виконання програм, які окремо або в сукупності перевіщують за обсягом доступну основну пам’ять. Для цього в неї має бути реалізована технологія віртуальної пам’яті. Така технологія дає можливість розміщувати в основній пам’яті тільки ті інструкції й дані процесу, які потрібні в поточний момент часу, при цьому вміст іншої частини адресного простору зберігається на диску.