Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
CHAPTER 2_A5.doc
Скачиваний:
6
Добавлен:
30.04.2019
Размер:
1 Mб
Скачать

2.8. Existence of limits

In general, no guarantee that a function f (x) actually has a limit as . If there is no limit, then we say that the limit does not exist.

T heorem: A function f (x) has a limit as x approaches x0 if and only if the right-hand and left-hand limit at exist and are equal. In symbols,

Remark: Keep in mind that the symbols and are simply descriptions of limits that fail to exist. These symbols do not represent real numbers and consequently they can not be manipulated using rules of algebra. For example, it is not correct to write =0.

Example:

Figure 2.1 shows the graph of function f whose domain is the closed interval .

a) Does exist?

b) Does exist?

c) Does exist?

Solution:

a) Inspection of the graph shows that

and

Although the two one-sided limits exist, they are not equal. Thus, does not exist. In short, “ f does not have a limit as ”.

b) Inspection of the graph shows that

and

Thus, exists and is 3. The solid dot at (2,2) shows that

f (2)=2. This information, however, plays no role in our examination of the limit of f (x) as .

c) Inspection of the graph shows that and

Thus, exists and is 2. Incidentally, the fact that f (3) is equal to 2 is irrelevant in determining .

2.9. Continuity

Definition: A function f is said to be continuous at a point c if the following conditions are satisfied:

1. f (c) is defined

2. exists

3.

If one or more of the conditions in this definition fails to hold, then f is called discontinuous at c and c is said to be a point of discontinuity of f . If f is continuous at all points of an open interval

(a , b), then f is said to be continuous on (a , b).

Example: is discontinuous at 2, because

f (2) is undefined.

Example:

is also discontinuous

at 2 because g (2) =3, and

, so that .

Example: Show that is a continuous function.

Solution: We can write f (x) as

is continuous if x>0 or x<0. is identical to the polynomial and all polynomials are continuous functions. Thus, x=0 is the only point that remains to be considered. At this point , so it remains to show that

Because the formula for f changes at 0, it will be helpful to consider the one-sided limits at 0 rather than the two- sided limit. We obtain:

and

Thus, (2) holds and is continuous at x=0.

Theorem: If functions f and g are continuous at c, then

a) f + g is continuous at c;

  1. b) f - g is continuous at c;

c) f g is continuous at c;

d) f / g is continuous at c if g(c)0

and is discontinuous at c if g(c)=0.

Theorem: A rational function is continuous everywhere except at the points where the denominator is zero.

Example: Where is continuous?

Solution: By theorem, the ratio is continuous everywhere except at the points where the denominator is zero. Since solution of are x=2 and x=3, h(x) is continuous everywhere except at these two points.

Exercises

In exercises 1-13 find the limits.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11.

12. as a) and b)

13.

as

In each of exercises 14 and 15 there is a graph of functions.

14. (See Fig.2.2). Decide which of given limits exist, and evaluate those which do.

; ;

; ;

15. (See Fig.2.3)

; ;

;

16. Graph

a) Find and .

b) Does exist? If so, what is that? If not, why not?

In exercises 17-22 find points of discontinuity, if any.

17. 18.

19. 20.

21. 22.

23. Find a value for the constant k, if possible, that will make the function continuous.

a) ; b)

24. Let f (x) equal the least integer that is greater than or equal to x. For instance, f (3) =3, f (3.4) =4, f (3.9) =4. This function is sometimes denoted and called the ” ceiling of x”. Graph the function and answer the questions.

a) Does exist? If so, what is it?

b) Does exist? If so, what is it?

c) Does exist? If so, what is it?

d) Is f continuous at 4?

e) Where is f continuous?

f) Where is f not continuous?

Answers

1. ; 2. ; 3. ; 4. ; 5. ; 6. ; 7. ; 8. ; 9. ; 10. ; 11. 0; 12. a) ; b) ; 13. a) ; b) ;

c) ; d) ; 14. a) 2; b) 1; c) 1; d) 3; 15. a) 2; b) 2; c) 1; d) 2;

16. a) 1, 1; b) 1; 17. none; 18. none; 19. ; 20. ;

21. none; 22. none; 23. a) 5; b) 4/3; 24. a) yes; 4; b) yes; 5; c) no;

d) no; e) all nonintegers; f) all integers.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]