
- •1. Классификация материалов по применению и составу. Основная задача материаловедения. Уровни структуры материалов. Методы исследования материалов.
- •2. Понятия «Сплав», «Компоненты», «Система», «Фаза»
- •3. Виды термодинамических систем.
- •4. Самоорганизация. Флуктуация. Катастрофа. Бифуркация.
- •5. Дефекты кристаллического строения.
- •6. Виды кристаллов. Характеристики кристаллических структур.
- •7. Виды сплавов по кристаллическому строению.
- •1)Механические смеси
- •2)Химические соединения (NaCl)
- •3)Твердые растворы внедрения, замещения (неупорядоченные), вычитания
- •8. Дисперсионное упрочнение сплавов. Дислокационный механизм упрочнения сплавов.
- •9. Виды разрушения металлов.
- •10. Дислокационный механизм пластической деформации.
- •11. Виды и понятие кристаллизации. Механизм процесса кристаллизации.
- •2 Вида кристаллизации:
- •12. Диаграммы состояния металлических систем.
- •13. Механические свойства металлов и сплавов.
- •14. Ебал я в рот
- •15. Свойства и применение сплавов на основе аллюминия.
- •16. Свойства и применение сплавов титана и магния.
- •17. Сплавы с памятью формы.
- •18. Структура и свойства жаропрочных материалов.
- •19. Основные операции порошковой металлургии.
- •20. Методы производства порошков
- •21. Классификация и применение керамических материалов
- •22. Виды и области применения биоматериалов.
- •23. Сверхтвёрдые материалы – структура, свойства.
- •27.Супрамолекулярные ансамбли и устройства
- •Основные составляющие супрамолекулярной химии
- •Применение
- •28. Виды жидких кристаллов и их использование.
- •31. Методы исследования наноматериалов.
- •30. Виды наноматериалов. Проблемы и перспективы нанотехнологии.
- •32. Принцип работы атомно-силового, туннельного микроскопов.
- •33. Сканирующий зондовый микроскоп
- •34. Просвечивающий электронный микроскоп
34. Просвечивающий электронный микроскоп
Просвечивающий электронный микроскоп — это устройство, в котором изображение от ультратонкого образца формируется в результате взаимодействия пучка электронов с веществом образца с последующим увеличением магнитными линзами (объектив) и регистрацией на флуоресцентном экране, либо на фотоплёнке.
Электроны эмиттируются в электронном микроскопе посредством термоэлектронной эмиссии из нити накаливания (например, вольфрамовая проволока), либо посредством полевой эмиссии. Затем электроны ускоряются высокой разностью потенциалов и фокусируются на образце электромагнитными линзами. Прошедший через образец луч содержит информацию об электронной плотности, фазе и периодичности; которые используются при формировании изображения.
ПЭМ состоит из нескольких компонентов:
1.вакуумная система;
2.источник электронов (электронный прожектор, электронная пушка) для генерирования электронного потока;
3.источник высокого напряжения для ускорения электронов;
4.Набор электромагнитных линз и электростатических пластин для управления и контроля электронного луча;
5.экран, на который проецируется увеличенное электронное изображение.