Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ответы на станции.doc
Скачиваний:
37
Добавлен:
26.04.2019
Размер:
768 Кб
Скачать

Вопросы по электрическим станциям к экзаменам 2011/2012 уч. года

  1. Классификация тепловых электростанций на органическом топливе. Назначение КЭС и ТЭЦ. Технологическая схема паротурбинной электростанции.

Типы электростанций.

ТЭС (тепловые)

66–68%

ТЭС – тепловые, вырабатывают электрическую энергию;

ТЭЦ – электроцентрали, вырабатывающие электроэнергию + тепло (расстояние передачи тепла не более 20-30 км);

ГРЭС – государственные районные электростанции.

 

Уголь, газ, мазут, торф =>по этому можно строить везде. 

 

  

– быстро строят, и строительство обходится дешевле, чем строительство ГЭС и АЭС;

– разнообразное сырьё;

– способность вырабатывать электроэнергию без сезонных колебаний;

– КПД – 33%.

ГЭС (гидравлические)

17–18%

1.Виды электростанций:

ГЭС – гидроэлектростанция на равнинных и горных реках;

ГАЭС -гидроаккумулирующая станция (Загорская);

ПЭС – приливная электростанция (высоту приливов и отливов).

 

2.Сырьё:

Вода равнинных и горных рек.

Движение воды во время приливов и отливов.

3.Качественная характеристика.

 

Преимущества:

– высокий КПД – 92-94%;

– экономичны, простота управления;

– обслуживает сравнительно немногочисленный персонал;

– маневренны при изменении нагрузки выработки электроэнергии;

– длительный срок эксплуатации (до 100 и более лет);

– низкая себестоимость электроэнергии;

– ГЭС – комплексное гидротехническое сооружение;

– регулирует стоки;

– плотина используется для транспортных связей между берегами (таблица);

– около них образуются промышленные центры (Тольятти, Набережные Челны, Балаково);

– процесс выработки электроэнергии не сопровождается загрязнением окружающей среды;

АЭС (атомные)

14–15%

АЭС – атомная электростанция, вырабатывает электроэнергию;

АЭЦ – атомная электроцентраль (тепло + энергия).

 

 

 

Ядерное топливо (плутоний и уран). При расходе 1 кг урана образуется энергии как при сгорании 2500 кг угля.

 

  

– на 20-30 тонн ядерного топлива АЭС работает несколько лет;

– в высшей степени концентрированное и транспортабельное топливо;

– маневренность;

– размещение (там, где нужна электроэнергия, но нет других источников сырья (мало)).

– КПД – 80%;

– дешёвая электроэнергия;

– сравнительно небольшие затраты при строительстве;

– работа станции не приводит к усилению парникового эффекта.

– процесс выработки электроэнергии не сопровождается загрязнением окружающей среды;

Недостатки:

   Несмотря на неоспоримые преимущества электростанций в добыче энергии перед топливной промышленностью и необходимостью их существования и востребованность, у них всё же существует целый ряд серьёзных проблем и недостатков, требующих внимательного изучения и решения.

1. Работают на невозабновимых ресурсах.

2.   Дают много отходов (самые чистые на природном газе).

3. Режим работы меняется медленно (для разогрева котла необходимо 2-3 суток).

4. Энергия дорогая, так как для эксплуатации станции, добычи и транспортировки топлива требуется много людей.

 

1. Длительное и дорогое строительство (15-20 лет).

2. Строительство сопровождается затоплением огромных площадей плодородных земель. В зоне затопления оказываются сотни деревень и даже городов.

3. Водохранилища изменяют речной сток, климат.

4. Вода в водохранилищах быстро загрязняется, так как идёт накопление отходов. Прошедшая через турбину   вода становится «мёртвой», поскольку в ней погибают микроорганизмы.

5. Проявление «капризности» по выбору места строительства.

1. АЭС таят в себе большой разрушительный потенциал: крупная авария способна вывести из хозяйственного использования тысячи километров территории (Чернобыль).

2. Проблема утилизации ядерного отработанного топлива в специальных могильниках.

Назначение КЭС и ТЭЦ см в определении. А схему на почте. (Можно на экзамен принести)

  1. Основные характеристики парогенераторов ТЭС, работающих на органическом топливе. Принципиальные схемы парогенераторов барабанного и прямоточного типов.

Принципиальные схемы на почте( можно на экзамен, только без подписей)

Прямоточный и барабанный тип ПГ.Парогенераторы имеют как буквы, так и цифры в своем обозначении. В этой маркировке должны быть указаны какого типа П/Г, какая производительность П/Г, какое давление пара на выходе из П/Г.

В стандартах: температура перегретого пара; если есть промежуточный перегрев, то и его температура; температура питательной воды, которая идет в экономайзер.

Е – барабанный парогенератор с естественной циркуляцией

Еп – барабанный парогенератор с промежуточным перегревом

П – прямоточный парогенератор

Пп – прямоточный парогенератор с промежуточным перегревом

За таким обозначением (например Пп) следует 2 цифры:

Пп – 1650 – 255 , где цифра 1650 обозначает производительность парогенератора в т/час; а цифра 255 обозначает давление пара (в атм.) на выходе из парогенератора.

  1. Классификация и состав органического топлива. Условное топливо и его теплота сгорания рабочей массы. Тепловой эквивалент.На ТЭС используются твердые топлива: уголь (бурый, каменный), торф.

Каменный уголь содержит до 12 % влаги (3-4 % внутренней), поэтому имеет более высокую теплоту сгорания по сравнению с бурым углем. Содержит до 32 % летучих веществ, за счёт чего неплохо воспламеняется. Содержание углерода в каменном угле, в зависимости от его сорта, составляет от 75 % до 95 %.В среднем, сжигание одного килограмма этого вида топлива приводит к выделению 2,93 кг CO2 и позволяет получить 6,67 кВт·чэнергии или, при КПД 30% — 2,0 кВт·ч электричества.

Также на ТЭС применяются газообразные виды топлива.

  • Природный газ,

  • пропан,

  • бутан,

  • попутный газ,

  • биогаз,

  • шахтный или коксовый газ,

  • пиролизный газ,

  • древесный газ,

Для работы газовой электростанции требуются значительные объемы топлива — в среднем 0,45-0,65 куб. метров биогаза для выработки 1 киловатта электричества. Соответственно, при использовании газа биологического происхождения требуются большие, дорогостоящие хранилища (газгольдеры) и системы — станции подготовки и очистки газа. В обязательной очистке нуждается попутный нефтяной газ, содержащий такое агрессивное вещество, как сероводород (H2S). Сероводород может содержаться и в биогазе. Использования неподготовленного газа приводит к затратному ремонту и значительному сокращению жизненного цикла силовых агрегатов газовых электростанций.

Топливо условное, единица учёта органического топлива, применяемая для сопоставления эффективности различных видов топлива и суммарного учёта их. В качестве единицы условного топлива принимается 1 кг топлива с теплотой сгорания 7000 ккал/кг (29,3 Мдж/кг). Для пересчёта натурального топлива в условное применяется калорийный эквивалент Э, величина которого определяется отношением низшей теплоты сгорания

Соотношение между условным и натуральным топливом выражается формулой:

где By — масса эквивалентного количества условного топлива, кг; Вн — масса натурального топлива, кг (твёрдое и жидкое топливо) или м3 (газообразное);  — низшая теплота сгорания данного натурального топлива, ккал/кг или ккал/м3;

  — калорийный эквивалент.

Значение Э принимают: для нефти 1,4; кокса 0,93; торфа 0,4; природного газа 1,2.

  Использование условного топлива особенно удобно для сопоставления экономичности различных теплоэнергетических установок. Например, в энергетике используется следующая характеристика — количество Топливо условное, затраченное на выработку единицы электроэнергии. Эта величина g, выраженная в гТопливо условное, приходящихся на 1 квт×ч электроэнергии, связана с кпд установки h соотношением

С помощью условного топлива можно составить топливный баланс или суммарный энергетический баланс отрасли, страны и мира в целом.

  1. Потери тепла в парогенераторе. Прямой и обратный балансы парогенератора. КПД парогенератора. Определение расхода топлива на парогенератор.

Прямой баланс.

Из прямого баланса, как правило, определяется расход топлива. Прямой баланс определяет, какое количество тепла мы должны затратить на образование пара в необходимых количествах. Например, iпе – энтальпия перегретого пара на входе в парогенератор, зависит от условий питательной воды: либо подогрета, либо нет. Питательная вода подогрета за счет пара из турбины.

Рисунок 5.

i’к – энтальпия воды. Тогда количество тепла, требуемое для нагрева одного килограмма воды (пара) равно (iпе – i’к)D0. Энтальпия воды не будет равна 30 ккал. Учет регенеративного подогрева

(iпе – iпв) D0.

Если имеется продувка: от температуры питательной воды до температуры насыщения котла:

D0 (iпе – i’пв) + Dпр(i’кот – iпв)

Промежуточный перегрев для прямоточного котла:

D0 (iпе – i’пв) + Dпп(iппвых – iппвх)

Количество тепла за счет сжигания топлива:

D0 (iпе – i’пв) + Dпп(iппвых – iппвх)=B ∙ Qpрηп/г

Определение КПД из обратного баланса: сумма потерь примерно 6-12%, поэтому КПД равно 88-94%.КПД парогенератора равно ηп/г = 100% - qj(в процентах)

ηп/г = 1 - qj(относительных единицах).

В расх топлива = [D0 (iпе – i’пв) + Dпп(iппвых – iппвх)]/Qpрηп/г (в относительных единицах) – прямой тепловой баланс парогенератора.

  1. Классификация паровых турбин. Принцип работы. Основные конструктивные элементы. Особенности теплофикационных турбин.

Паровая турбина — самая значимая и самая дорогая часть ТЭС. Неотъемлемой частью конденсационной турбины является конденсатор.

Основное назначение турбины

вращать вал электрогенератора

вырабатывать мощность, которая для этого необходима.

Устройство паровой турбины

Типичная паровая турбина показана на рис. 6.1. Турбина состоит из трех цилиндров (ЦВД, ЦСД и ЦНД), нижние половины корпусов которых обозначены соответственно 39, 24 и18. Каждый из цилиндров состоит из статора, главным элементом которого являются неподвижный корпус, и вращающегося ротора. Отдельные роторы цилиндров (ротор ЦВД 47, ротор ЦСД 5 и ротор ЦНД 11) жестко соединяются муфтами 31 и 21. К полумуфте 12 присоединяется полумуфта ротора электрогенератора (не показан), а к нему — ротор возбудителя. Цепочка из собранных отдельных роторов цилиндров, генератора и возбудителя называется валопроводом. Его длина при большом числе цилиндров (а самое большое их число в современных турбинах — 5) может достигать 80 м.

Рис. 6.1

Валопровод вращается во вкладышах 42, 29, 23, 20 и т.д. опорных подшипников скольжения на тонкой масляной пленке и не касается металлической части вкладышей подшипников. Как правило, каждый из роторов размещают на двух опорных подшипниках. Иногда между роторами ЦВД и ЦСД устанавливают только один общий для них опорный подшипник (см. 29 на рис. 6.1). Расширяющийся в турбине пар заставляет вращаться каждый из роторов, возникающие на них мощности складываются и достигают на полумуфте 12 максимального значения.

К каждому из роторов приложено осевое усилие. Они суммируются, и их результирующая осевая сила передается с гребня 30 на упорные сегменты, установленные в корпусе упорного подшипника.

Каждый из роторов помещают в корпус цилиндра (см., поз. 24). При больших давлениях (а в современных турбинах оно может дос­тигать 30 МПа  300 ат) корпус цилиндра (обычно ЦВД) выполняют двухстенным (из внутреннего 35 и внешнего 46 корпусов). Это уменьшает разность давлений на каждый из корпусов, позволяет сделать его стенки более тонкими, облегчает затяжку фланцевых соединений и позволяет турбине при необходимости быстро изменять свою мощность.

Все корпуса в обязательном порядке имеют горизонтальные разъемы 13, необходимые для установки роторов внутри цилиндров при монтаже, а также для легкого доступа внутрь цилиндров при ревизиях и ремонтах. При монтаже турбины все плоскости разъемов нижних половин корпусов устанавливают специальным образом (для простоты можно считать, что все плоскости разъема совмещают в одной горизонтальной плоскости). При последующем монтаже ось валопровода помещают в эту плоскость разъема, что обеспечивает центровку — ось валопровода будет точно совпадать с осью кольцевых расточек корпусов. Этим будут исключены задевания ротора о статор, которые могут привести к тяжелой аварии.

Пар внутри турбины имеет высокую температуру, а ротор вращается во вкладышах на масляной пленке, температура масла которой как по соображениям пожаробезопасности, так и необходимости иметь определенные смазочные свойства, не должна превышать 100 °С (а температура подаваемого и отводимого масла должна быть еще ниже). Поэтому вкладыши подшипников выносят из корпусов цилиндров и размещают их в специальных строениях — опорах (см. поз. 45, 28, 7 на рис. 6.1). Таким образом, вращающиеся концы каждого из роторов соответствующего цилиндра необходимо вывести из невращающегося статора, причем так, чтобы с одной стороны исключить какие-либо (даже малейшие) задевания ротора о статор, а с другой — не допустить значительную утечку пара из цилиндра в зазор между ротором и статором, так как это снижает мощность и экономичность турбины. Поэтому каждый из цилиндров снабжают концевыми уплотнениями (см. поз. 40, 32, 19) специальной конструкции.

Турбина устанавливается в главном корпусе ТЭС на верхней фундаментной плите 36 (см. рис. 2.6). В плите выполняются прямоугольные окна по числу цилиндров, в которых размещаются нижние части корпусов цилиндров, а также осуществляется вывод трубопроводов, питающих регенеративные подогреватели, паропроводы свежего и вторично перегретого пара, переходный патрубок к конденсатору.

После изготовления турбина проходит контрольную сборку и опробование на заводе-изготовителе. После этого ее разбирают на более-менее крупные блоки, доводят до хорошего товарного вида, консервируют, упаковывают в деревянные ящики и отправляют для монтажа на ТЭС.

При работе турбины пар из котла по одному или нескольким паропроводам (это зависит от мощности турбины) поступает сначала к главной паровой задвижке, затем к стопорному (одному или нескольким) и, наконец, к регулирующим клапанам (чаще всего — 4). От регулирующих клапанов (на рис. 6.1 не показаны) пар по перепускным трубам 1 (на рис. 6.1 их четыре: две из них присоединены к крышке 46 внешнего корпуса ЦВД, а две других подводят пар в нижние половины корпуса) подается в паровпускную камеру 33 внутреннего корпуса ЦВД. Из этой полости пар попадает в проточную часть турбины и, расширяясь, движется к выходной камере ЦВД 38. В этой камере в нижней половине корпуса ЦВД имеются два выходных патрубка 37. К ним приварены паропроводы, направляющие пар в котел для промежуточного перегрева.

Вторично перегретый пар по трубопроводам поступает через стопорный клапан (не показан на рис. 1) к регулирующим клапанам 4, а из них — в паровпускную полость ЦСД 26. Далее пар расширяется в проточной части ЦСД и поступает в его выходной патрубок 22, а из него — в две перепускные трубы 6 (иногда их называют ресиверными), которые подают пар в паровпускную камеру ЦНД 9. В отличие от однопоточных ЦВД и ЦСД, ЦНД почти всегда выполняют двухпоточными: попав в камеру 9, пар расходится на два одинаковых потока и, пройдя их, поступает в выходные патрубки ЦНД 14. Из них пар направляется вниз в конденсатор. Перед передней опорой 41 располагается блок регулирования и управления турбиной 44. Его механизм управления 43 позволяет пускать, нагружать, разгружать и останавливать турбину.