
- •Вопрос 1 Явление переноса в газах: диффузия, теплопроводность, вязкость
- •Вопрос 2 Теория теплоёмкости Эйнштейна
- •Недостатки теории
- •Вопрос 1Пространственная решетка. Элементарная и примитивная решетки.
- •Вопрос 2 Уравнение Аррениуса
- •Вопрос 1 Природа пластичности твердых тел
- •Вопрос 2 Учет вклада свободных электронов в теплоемкость.
- •Вырожденный газ
- •Вопрос 1 Распределение электронов по энергетическим зонам в металлах, полупроводниках и диэлектриках.
- •Вопрос 2 Понятие длинны и времени выравнивания концентрации в газах и времени выравнивания температуры.
- •Вопрос 1Пространственные группы и кристаллические классы
- •Вопрос 2 Перемещение атомов в твёрдых телах на большие расстояния.
- •Вопрос 1 Дефекты кристаллической решётки.
- •Вопрос 2 Теория теплоёмкости Дебая.
- •Вопрос 1 Общее уравнение переноса
- •Вопрос 2 Решетка с базисом на примере кубической объемно центрированной и кубической гранецентрированной решеток. Простая, объемно- и гранецентрированная кубические решетки
- •Вопрос 1 Квантовая теория электропроводности металлов
- •Вопрос 2 Эффект Холла как метод исследования полупроводников
- •Вопрос 1 Поглощение света в кристаллах
- •Вопрос 2 Закон Видельмана- Франса
- •Вопрос 1Частные случаи общего уравнения переноса
- •Процесс переноса массы
- •Процесс переноса энергии
- •Вопрос 2 Нормальные колебания решетки
- •Вопрос 1 Сравнение механизма электропроводности металлов с механизмов проводимости в полупроводниках
- •Вопрос 2 Теплопроводность твердых тех
- •Вопрос 1 Понятие о симметрии кристаллической решетки
- •Вопрос 2 вакансионный механизм диффузии в твердых телах
- •Вопрос 1 Теплоемкость твердых тел
- •Вопрос 2 Эффект Холла в полупроводниках конечных размеров
- •Вопрос 1 Зависимость концентрации свободных электронов их подвижности и проводимости от температуры
- •Вопрос 2 Используем статистику Ферми-Дирака для описания электронного газа в полупроводнике.
- •Вопрос 1 Электропроводность чистых металлов. Правило Маттисена
- •Вопрос 2
- •Вопрос 1 Понятие эффективного диаметра молекул их длины свободного пробега
- •Вопрос 2 Определение энергии Ферми
- •Вопрос 1 Эффект Холла в неограниченном веществе
- •Вопрос 2 Индексы Милера
- •Вопрос 1 Модель свободных электронов
- •Вопрос 2 Методы изучения структуры твёрдых тел с помощью рентгеновского излучения.
- •Вопрос 1 Понятие о фононах
- •Вопрос 2 Зависимость концентрации, подвижности и проводимости полупроводников от температуры
- •Вопрос 1 Теплопроводность металлов
- •Вопрос 2 определение ширины запрещенной зоны полупроводников оптическим методом
- •Вопрос 1 Квантовая теория электропроводности
- •Вопрос 2 Атомный механизм диффузии в междоузлии
- •Вопрос 1 Сравнение классической теории электропроводности с квантовой
- •Вопрос 2 Оптика полупроводников
- •Вопрос 1 Условия выбора элементарных ячеек по Браве
- •Вопрос 2 Теория теплоемкости Дебая
- •Вопрос 1 Энергия активации диффузии в твердых телах
- •Вопрос 2 учебник Савельев страница 182, 202 (учебник у Славы )
- •Вопрос 1 Частные случаи общего уравнения переноса.
- •Вопрос 2 Связь подвижности электронов со временем релаксации.
- •Вопрос 1 Пространственные группы и кристаллические классы.
- •Вопрос 1 Учет вклада свободных электронов в теплоемкость.
- •Вопрос 2 Симметрия Кристаллов
- •Вопрос 1 Классификация твёрдых тел
- •Вопрос 2 Зависимость сопротивления проводника от температуры
- •Вопрос 2 Оптика полупроводников
- •Вопрос 1 Частный случай общего уравнения переноса: диффузия
- •Вопрос 2 Кубическая сингания
- •Вопрос 1
- •Вопрос 2 Теория теплоёмкости Эйнштейна. Общие положения.
- •Вопрос 1 Связь межплоскостных расстояний с индексами
- •Вопрос 2 Проводимость примесных полупроводников.
Вопрос 1 Частный случай общего уравнения переноса: диффузия
1) ДИФФУЗИЯ (от лат. diffusio - распространение, растекание, рассеивание) - неравновесный процесс, вызываемый молекулярным тепловым движением и приводящий к установлению равновесного распределения концентраций внутри фаз. В результате Д. происходит выравнивание хим. потенциалов компонентов смеси. В однофазной системе при пост. темп-ре и отсутствии внеш. сил Д. выравнивает концентрацию каждого компонента фазы по объёму всей системы. Если темп-pa не постоянна или на систему действуют внеш. силы, то в результате Д. устанавливается пространственно неоднородное равновесное распределение концентраций каждого из компонентов (см. Термодиффузия, Электродиффузия).
Д.- частный случай переноса явлений, относится к явлениям массопереноса. Она является одним из наиб. общих кинетич. процессов, присущих газам, жидкостям и твёрдым телам, протекающих в иих с разл. скоростью. Диффундировать могут также взвешенные малые частицы посторонних веществ (вследствие броуновского движения), а также собств. частицы вещества (самодиффузия ).Диффузия - необратимый процесс, один из источников диссипации энергии в системе.
ДИФФУЗИИ УРАВНЕНИЕ - дифференциальное уравнение с частными производными 2-го порядка, описывающее процесс диффузии в случае, когда перенос вещества вызван лишь градиентом его концентрации (в отличие от термодиффузии и т. п.). Д. у. чаще всего записывают в виде
где и(x, t) - концентрация вещества в точке среды в момент времени t, D - коэф. диффузии, q - коэф. поглощения, a F - интенсивность источников вещества. Величины D, q и F обычно являются ф-циями x и t, а также могут зависеть от концентрации и(x, t). B последнем случае ур-ние (1) становится нелинейным. В анизотропной среде коэфф. диффузии D является тензорным полем.
Вопрос 2 Кубическая сингания
2) Кубическая сингония. В этой сингонии кристаллизуются наиболее симметричные кристаллы. В кубической сингонии присутствует более одной оси симметрии выше второго порядка, т. е. L3 или L4 . Кристаллы кубической сингонии обязательно должны иметь четыре оси третьего порядка (4L3) и, кроме того, либо три взаимно перпендикулярные оси четвертого порядка (3L4), либо три оси второго порядка (3L2).
Максимальное количество элементов симметрии в кубической сингонии может быть выражено формулой 3L4 4L36L29PC. Кристаллы кубической сингонии встречаются в виде куба октаэдра, тетраэдра, ромбододекаэдра, пентагон-додекаэ дра и др.
Формула в символике Браве-4L33L2; 4L33L23PC; 4L33L2(3Li4)6P; 3L44L36L2; 3L44L36L29PC
В кубической сингонии существует три вида решёток Бравэ: примитивная, объёмно-центрированная и гранецентрированная.
гранецентрированная
объёмно-центрированная
простая
Координационное число — характеристика, которая определяет число ближайших частиц (ионов или атомов) в молекуле или кристалле.
В кристаллохимии координационное число — характеристика, которая определяет число ближайших равноудаленных одинаковых частиц (ионов или атомов) в кристаллической решётке. Прямые линии, соединяющие центры ближайших атомов или ионов в кристалле, образуют координационный многогранник, в центре которого находится данный атом.
В решётках Браве для всех узлов координационное число одинаково. Число ближайших соседей отражает плотность упаковки вещества. Чем больше координационное число, тем больше плотность и соответственно свойства вещества ближе к металлическим. Данному параметру решетки соответствует первая, вторая (соседи, следующие за ближайшими), третья и т. д. координационные группы частиц.
Для простой кубической решетки координационное число равно шести, для ОЦК — 8, ГЦК и ГП (гексагональной плотноупакованной) — 12
Билет 31