Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
FIZIKA_001.docx
Скачиваний:
17
Добавлен:
25.04.2019
Размер:
1.85 Mб
Скачать

Вопрос 1 Пространственные группы и кристаллические классы.

Пространственные группы симметрии

Построение решетки кристалла путем трансляции элементарной ячейки - это наиболее простой подход к решению данной задачи. Оказалось, что весь кристалл, в узлах кристаллической решетки которого находятся центры атомов одного и того же сорта, можно построить, исходя не из всей ячейки, а из единственного атома, повторяя его при помощи операций симметрии пространственной группы.

В пространственной группе к элементам симметрии точечной группы добавляются операции трансляций. Всего пространственных групп 230. Если система точек представляет собой решетку Бравэ, то каждую поворотную ось симметрии можно заменить винтовой, а каждую плоскость симметрии – плоскостью скользящего отражения.

В кристаллах ввиду наличия крист. решётки возможны только операции и соответственно оси симметрии до 6-го порядка (кроме 5-го; в крист. решётке не может быть оси симметрии 5-го порядка, т. к. с помощью пятиугольников нельзя заполнить пространство без промежутков), к-рые обозначаются символами: 1, 2, 3, 4, 6, а также инверсионные оси 1 (она же — центр симметрии), 2 (она же — плоскость симметрии), 3, 4, 6. Поэтому количество точечных кристаллографич. групп симметрии, описывающих внеш. форму кристаллов, ограничено, их всего 32 (см. табл.). В междунар. обозначения точечных групп входят символы порождающих их операций симметрии. Эти группы объединяются по симметрии формы элементарной ячейки (с периодами о, b, с и углами a, b, g) в 7 сингоний.

Группы, содержащие лишь повороты, описывают кристаллы, состоящие только из совместимо равных частей (группы 1-го рода). Группы, содержащие отражения или инверсионные повороты, описывают кристаллы, в к-рых есть зеркально равные части (группы 2-го рода). Кристаллы, описываемые группами 1-го рода, могут кристаллизоваться в двух энантиоморфных формах («правой» и «левой», каждая из к-рых не содержит элементов симметрии 2-го рода), но зеркально равных друг другу.

Точечные группы описывают симметрию не только кристаллов, но любых конечных фигур. В живой природе часто наблюдается запрещённая в кристаллографии симметрия с осями 5-го, 7-го порядка и выше. Напр., для описания регулярной структуры сферич. вирусов, в оболочках к-рых соблюдаются принципы плотной укладки молекул, оказалась важной икосаэдрическая точечная группа 532 .

Предельные группы. Функции, к-рые описывают зависимость разл. свойств кристалла от направления, имеют определённую точечную симметрию, однозначно связанную с группой симметрии огранения кристалла. Она либо совпадает с ней, либо выше неё по симметрии

Билет 27

Вопрос 1 Учет вклада свободных электронов в теплоемкость.

Теплоёмкость электронного газа — количество теплоты, которую необходимо передать электронному газу для того, чтобы повысить его температуру на 1 К. Она намного меньше по величине при высоких температурах, чем теплоёмкость кристаллической решётки.

Вырожденный газ

Для вырожденного электронного газа в металлах теплоёмкость определяется формулой

,

где m * — эффективная масса электронов, — приведённая постоянная Планка, kB — постоянная Больцмана, μ0 — энергия уровня Ферми, T — температура.

Теплоёмкость стремится к нулю при малых температурах, удовлетворяя теореме Нернста и линейно возрастает с температурой. Поскольку теплоёмкость кристаллической решётки при низких температурах пропорциональная кубу температуры (см. модель Дебая) то существует область низких температур, при которых теплоёмкость электронов больше чем теплоёмкость решётки. Однако при более высоких температурах, чем температура Дебая, вклад электронной подсистемы в общую теплоёмкость твёрдого тела не превышает нескольких процентов. Для этих температур справедливо

,

где — теплоёмкость кристаллической решётки.

Объясняется такое соотношение тем, что вклад в электронную теплоёмкость вносят лишь те электроны, которые имеют энергию, близкую к энергии Ферми. Электроны с энергиями, намного низшими чем энергия уровня Ферми, не могут получать тепло, поскольку для увеличения энергии им нужно было бы перейти на близкие энергетические уровне внутри зоны, уже занятые другими электронами. Из-за принципа Паули переход в занятое другим электроном состояние невозможен.

Энергия Фе́рми (EF) системы невзаимодействующих фермионов — это увеличение энергии основного состояния системы при добавлении одной частицы. Это эквивалентно химическому потенциалу системы в ее основном состоянии при абсолютном нуле температур. Энергия Ферми может также интерпретироваться как максимальная энергия фермиона в основном состоянии при абсолютном нуле температур. Энергия Ферми — одно из центральных понятий физики твёрдого тела.

Физический смысл уровня Ферми: вероятность обнаружения частицы на уровне Ферми составляет 0,5 при любых температурах.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]