
- •Вопрос 1 Явление переноса в газах: диффузия, теплопроводность, вязкость
- •Вопрос 2 Теория теплоёмкости Эйнштейна
- •Недостатки теории
- •Вопрос 1Пространственная решетка. Элементарная и примитивная решетки.
- •Вопрос 2 Уравнение Аррениуса
- •Вопрос 1 Природа пластичности твердых тел
- •Вопрос 2 Учет вклада свободных электронов в теплоемкость.
- •Вырожденный газ
- •Вопрос 1 Распределение электронов по энергетическим зонам в металлах, полупроводниках и диэлектриках.
- •Вопрос 2 Понятие длинны и времени выравнивания концентрации в газах и времени выравнивания температуры.
- •Вопрос 1Пространственные группы и кристаллические классы
- •Вопрос 2 Перемещение атомов в твёрдых телах на большие расстояния.
- •Вопрос 1 Дефекты кристаллической решётки.
- •Вопрос 2 Теория теплоёмкости Дебая.
- •Вопрос 1 Общее уравнение переноса
- •Вопрос 2 Решетка с базисом на примере кубической объемно центрированной и кубической гранецентрированной решеток. Простая, объемно- и гранецентрированная кубические решетки
- •Вопрос 1 Квантовая теория электропроводности металлов
- •Вопрос 2 Эффект Холла как метод исследования полупроводников
- •Вопрос 1 Поглощение света в кристаллах
- •Вопрос 2 Закон Видельмана- Франса
- •Вопрос 1Частные случаи общего уравнения переноса
- •Процесс переноса массы
- •Процесс переноса энергии
- •Вопрос 2 Нормальные колебания решетки
- •Вопрос 1 Сравнение механизма электропроводности металлов с механизмов проводимости в полупроводниках
- •Вопрос 2 Теплопроводность твердых тех
- •Вопрос 1 Понятие о симметрии кристаллической решетки
- •Вопрос 2 вакансионный механизм диффузии в твердых телах
- •Вопрос 1 Теплоемкость твердых тел
- •Вопрос 2 Эффект Холла в полупроводниках конечных размеров
- •Вопрос 1 Зависимость концентрации свободных электронов их подвижности и проводимости от температуры
- •Вопрос 2 Используем статистику Ферми-Дирака для описания электронного газа в полупроводнике.
- •Вопрос 1 Электропроводность чистых металлов. Правило Маттисена
- •Вопрос 2
- •Вопрос 1 Понятие эффективного диаметра молекул их длины свободного пробега
- •Вопрос 2 Определение энергии Ферми
- •Вопрос 1 Эффект Холла в неограниченном веществе
- •Вопрос 2 Индексы Милера
- •Вопрос 1 Модель свободных электронов
- •Вопрос 2 Методы изучения структуры твёрдых тел с помощью рентгеновского излучения.
- •Вопрос 1 Понятие о фононах
- •Вопрос 2 Зависимость концентрации, подвижности и проводимости полупроводников от температуры
- •Вопрос 1 Теплопроводность металлов
- •Вопрос 2 определение ширины запрещенной зоны полупроводников оптическим методом
- •Вопрос 1 Квантовая теория электропроводности
- •Вопрос 2 Атомный механизм диффузии в междоузлии
- •Вопрос 1 Сравнение классической теории электропроводности с квантовой
- •Вопрос 2 Оптика полупроводников
- •Вопрос 1 Условия выбора элементарных ячеек по Браве
- •Вопрос 2 Теория теплоемкости Дебая
- •Вопрос 1 Энергия активации диффузии в твердых телах
- •Вопрос 2 учебник Савельев страница 182, 202 (учебник у Славы )
- •Вопрос 1 Частные случаи общего уравнения переноса.
- •Вопрос 2 Связь подвижности электронов со временем релаксации.
- •Вопрос 1 Пространственные группы и кристаллические классы.
- •Вопрос 1 Учет вклада свободных электронов в теплоемкость.
- •Вопрос 2 Симметрия Кристаллов
- •Вопрос 1 Классификация твёрдых тел
- •Вопрос 2 Зависимость сопротивления проводника от температуры
- •Вопрос 2 Оптика полупроводников
- •Вопрос 1 Частный случай общего уравнения переноса: диффузия
- •Вопрос 2 Кубическая сингания
- •Вопрос 1
- •Вопрос 2 Теория теплоёмкости Эйнштейна. Общие положения.
- •Вопрос 1 Связь межплоскостных расстояний с индексами
- •Вопрос 2 Проводимость примесных полупроводников.
Вопрос 2 Оптика полупроводников
Поглощение света полупроводниками обусловлено переходами между энергетическими состояниями зонной структуры. Учитывая принцип запрета Паули, электроны могут переходить только из заполненного энергетического уровня на незаполненный. В собственном полупроводнике все состояния валентной зоны заполнены, а все состояния зоны проводимости незаполненные, поэтому переходы возможны лишь из валентной зоны в зону проводимости. Для осуществления такого перехода электрон должен получить от света энергию, превышающую ширину запрещённой зоны. Фотоны с меньшей энергией не вызывают переходов между электронными состояниями полупроводника, поэтому такие полупроводники прозрачны в области частот , где Eg — ширина запрещённой зоны, — постоянная Планка. Эта частота определяет фундаментальный край поглощения для полупроводника. Для полупроводников, которые зачастую применяются в электронике (кремний, германий, арсенид галлия) она лежит в инфракрасной области спектра. Дополнительные ограничения на поглощение света полупроводников накладывают правила отбора, в частности закон сохранения импульса. Закон сохранения импульса требует, чтобы квазиимпульс конечного состояния отличался от квазиимпульса начального состояния на величину импульса поглощённого фотона. Волновое число фотона 2π / λ, где λ — длина волны, очень мало по сравнению с волновым вектором обратной решётки полупроводника, или, что то же самое, длина волны фотона в видимой области намного больше характерного межатомного расстояния в полупроводнике, что приводит к требованию того, чтобы квазиимпульс конечного состояния при электронном переходе практически равнялся квазиимпульсу начального состояния. При частотах, близких к фундаментальному краю поглощения, это возможно только для прямозонных полупроводников. Оптические переходы в полупроводниках, при которых импульс электрона почти не меняется называются прямыми или вертикальными. Импульс конечного состояния может значительно отличаться от импульса начального состояния, если в процессе поглощения фотона участвует ещё одна, третья частица, например, фонон. Такие переходы тоже возможны, хотя и менее вероятны. Они называются непрямыми переходами. Таким образом, прямозонные полупроводники, такие как арсенид галлия, начинают сильно поглощать свет, когда энергия кванта превышает ширину запрещённой зоны. Такие полупроводники очень удобны для использования в оптоэлектронике. Непрямозонные полупроводники, например, кремний, поглощают в области частот света с энергией кванта чуть больше ширины запрещённой зоны значительно слабее, только благодаря непрямым переходам, интенсивность которых зависит от присутствия фононов, и следовательно, от температуры. Граничная частота прямых переходов кремния больше 3 эВ, то есть лежит в ультрафиолетовой области спектра. При переходе электрона из валентной зоны в зону проводимости в полупроводнике возникают свободные носители заряда, а следовательно фотопроводимость. При частотах ниже края фундаментального поглощения также возможно поглощение света, которое связано с возбуждением экситонов, электронными переходами между уровнями примесей и разрешенными зонами, а также с поглощением света на колебаниях решетки и свободных носителях. Экситонные зоны расположены в полупроводнике несколько ниже дна зоны проводимости благодаря энергии связи экситона. Экситонные спектры поглощения имеют водородоподобную структуру энергетических уровней. Аналогичным образом примеси, акцепторы или доноры, создают акцепторные или донорные уровни, лежащие в запрещённой зоне. Они значительно модифицируют спектр поглощения легированного полупроводника. Если при непрямозонном переходе одновременно с квантом света поглощается фонон, то энергия поглощенного светового кванта может быть меньше на величину энергии фонона, что приводит к поглощению на частотах несколько ниже по энергии от фундаментального края поглощения.
Билет 23