Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Bilety_MATAN_14-26.docx
Скачиваний:
14
Добавлен:
24.04.2019
Размер:
489.62 Кб
Скачать

Вопрос №14

Понятие сложной функции. Непрерывность сложной функции в точке.

Определение. Функция  , определенная на множестве  называется непрерывной в точке  , если  .

Из определения непрерывной функции следует, что функция в точке определена, её значение в этой точке равно   и кроме того, так как   мы имеем   т.е. под знаком непрерывной функции можно переходить к пределу.

Замечание. Существование   равносильно тому, что существуют равные друг другу левосторонний и правосторонний пределы функции при  , равные к тому же значению функции в точке  , т.е.

.              

Сложная функция- функция, аргументом которой является другая любая функция.

Возьмем, к примеру, функцию y=x+4. Подставим в аргумент функцию y=x+2.

Получается: y(x+2)=x+2+4=x+6. Это и будет являться сложной функцией.

Теорема 2. Если функция u(x) непрерывна в точке х0, а функция f(u) непрерывна в соответствующей точке u0 = f(x0), то сложная функция f(u(x)) непрерывна в точке х0.

Вопрос №15

Классификация точек разрыва. Понятие кусочно-непрерывной функции.

Все точки разрыва функции разделяются на точки разрыва первого и второго рода.  Говорят, что функция f (x) имеет точку разрыва первого рода при x = a, если в это точке

  • Существуют левосторонний предел   и правосторонний предел  ;

  • Эти односторонние пределы конечны.

При этом возможно следующие два случая:

  • Левосторонний предел и правосторонний предел равны друг другу:

Такая точка называется точкой устранимого разрыва.

  • Левосторонний предел и правосторонний предел не равны друг другу:

Такая точка называется точкой конечного разрыва. Модуль разности значений односторонних пределов  называется скачком функции.

Функция f (x) имеет точку разрыва второго рода при x = a, если по крайней мере один из односторонних пределов не существует или равен бесконечности. 

Кусочно-заданная функция — функция, определённая на множестве действительных чисел, заданная на каждом из интервалов, составляющих область определения, отдельной формулой.

Формальное определение и задание

Пусть заданы   — точки смены формул.

Как и все кусочно-заданные функции, кусочно-линейную функцию обычно задают на каждом из интервалов  отдельно. Записывают это в виде: 

Виды кусочно-заданных функций

  • Если все функции — постоянные, то f(x) — кусочно-постоянная функция.

  • Если все функции fi(x) являются линейными функциями, то f(x) — кусочно-линейная функция.

  • Если все функции fi(x) являются непрерывными функциями, то f(x) — кусочно-непрерывная функция. При этом сама она может не являться непрерывной.

  • Если все функции fi(x) являются дифференцируемыми функциями, то f(x) — кусочно-гладкая функция. При этом точки смены формул могут быть (а могут и не быть) точками излома.

  • Если все функции fi(x) являются монотонными функциями, то f(x) — кусочно-монотонная функция. При этом на соседних интервалах монотонность может быть разной.

Вопрос №16

Комплексные числа. Операции над комплексными числами в алгебраической форме записи.

1. Существует элемент i (мнимая единица) такой, что i2 = – 1.

2. Символ a + bi называют комплексным числом с действительной частью a и мнимой частью bi, где a и b – действительные числа, b – коэффициент мнимой части.

Комплексное число a + 0i отождествляется с действительным числом a, т.е. a + 0i = a, в частности, 0 + 0i = 0. Числа вида bi (b  0) называют чисто мнимыми.

Например, комплексное число 2 + 3i имеет действительную часть – действительное число 2 и мнимую часть 3i, действительное число 3 – коэффициент мнимой части.

Комплексное число 2 – 3i имеет действительную часть число 2, мнимую часть – 3i, число – 3 – коэффициент при мнимой части.

3. Правило равенства. Два комплексных числа равны тогда и только тогда, когда равны их действительные части и равны коэффициенты мнимых частей.

Т.е., если a + bi = c +di, то a = c, b = d: и, обратно, если a = c, b = d, то a + bi = c +di.

4. Правило сложения и вычитания комплексных чисел.

(a + bi) + (c + di) = (a + c) + (b + d)i.

Например:

(2 + 3i) + (5 + i) = (2 + 5) + (3 + 1)i = 7 + 4i;

(– 2 + 3i) + (1 – 8i) = (– 2 + 1) + (3 + (– 8))i = – 1 – 5i;

(– 2 + 3i) + (1 – 3i) = (– 2 + 1) + (3 + (– 3))i =

= – 1 + 0i = – 1.

Вычитание комплексных чисел определяется как операция, обратная сложению, и выполняется по формуле:

(a + bi) – (c + di) = (a – c) + (b – d)i.

Например:

(5 – 8i) – (2 + 3i) = (3 – 2) + (– 8 – 3)i = 1 – 11i;

(3 – 2i) – (1 – 2i) = (3 – 1) + ((– 2) – (– 2))i = 2 + 0i = 2.

5. Правило умножения комплексных чисел.

(a + bi)(c + di) = (aс + bd) + (ad + bc)i.

Из определений 4 и 5 следует, что операции сложения, вычитания и умножения над комплексными числами осуществляются так, как будто мы выполняем операции над многочленами, однако с условием, что i2 = – 1.

Действительно: (a + bi)(c + di) = ac + adi + bdi2 = (ac – bd) + (ad + bc)i.

Например, (– 1 + 3i)(2 + 5i) = – 2 – 5i + 6i + 15i2 = – 2 – 5i + 6i – 15 = – 17 + i;  (2 + 3i)(2 – 3i) = 4 – 6i + 6i – 9i2 = 4 + 9 = 13.

Из второго примера следует, что результатом сложения, вычитания, произведения двух комплексных чисел может быть число действительное. В частности, при умножении двух комплексных чисел a + bi и a – bi, называемых сопряженными комплексными числами, в результате получается действительное число, равное сумме квадратов действительной части и коэффициента при мнимой части. Действительно:

(a + bi)(a – bi) = a2 – abi + abi – b2i2 = a2 + b2.

Произведение двух чисто мнимых чисел – действительное число.

Например:  5i•3i = 15i2 = – 15; – 2i•3i = – 6i2 = 6,  и вообще   bi•di = bdi2 = – bd.

6. Деление комплексного числа a + bi на комплексное число c + di  0 определяется как операция обратная умножению и выполняется по формуле:

.

Формула теряет смысл, если c + di = 0, так как тогда c2 + d2 = 0, т. е. деление на нуль и во множестве комплексных чисел исключается.

Обычно деление комплексных чисел выполняют путем умножения делимого и делителя на число, сопряженное делителю.

Например,

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]