
- •1.1. Общие понятия
- •1.2. Фундаментальные принципы управления
- •1.2.1. Принцип разомкнутого управления
- •1.2.2. Принцип компенсации
- •1.2.3. Принцип обратной связи
- •2.1. Основные виды сау
- •2.2. Статические характеристики
- •2.3. Статическое и астатическое регулирование
- •3.1. Динамический режим сау. Уравнение динамики
- •3.2. Линеаризация уравнения динамики
- •3.3. Передаточная функция
- •3.4. Элементарные динамические звенья
- •4.1. Эквивалентные преобразования структурных схем
- •1. Последовательное соединение (рис.28) - выходная величина предшествующего звена подается на вход последующего. При этом можно записать:
- •4.2. Сар напряжения генератора постоянного тока
- •5.1. Понятие временных характеристик
- •5.2. Переходные характеристики элементарных звеньев
- •5.2.1. Безынерционное (пропорциональное, усилительное) звено
- •5.2.2. Интегрирующее (астатическое) звено
- •5.2.3. Инерционное звено первого порядка (апериодическое)
- •5.2.4. Инерционные звенья второго порядка
- •5.2.5. Дифференцирующее звено
- •6.1. Понятие частотных характеристик
- •6.2. Частотные характеристики типовых звеньев
- •6.2.1. Безынерционное звено
- •6.2.2. Интегрирующее звено
- •6.2.3. Апериодическое звено
- •6.2.4. Инерционные звенья второго порядка
- •6.2.5. Правила построения чх элементарных звеньев
- •7.1. Частотные характеристики разомкнутых одноконтурных сау
- •7.2. Законы регулирования
- •8.1. Понятие устойчивости системы
- •8.2. Алгебраические критерии устойчивости
- •8.2.1. Необходимое условие устойчивости
- •8.2.1. Критерий Рауса
- •8.2.2. Критерий Гурвица
- •9.1. Принцип аргумента
- •9.2. Критерий устойчивости Михайлова
- •9.3. Критерий устойчивости Найквиста
- •10.1. Понятие структурной устойчивости. Афчх астатических сау
- •10.2. Понятие запаса устойчивости
- •10.3. Анализ устойчивости по лчх
- •11.1. Теоретическое обоснование метода d-разбиений
- •11.3. Прямые методы оценки качества управления
- •11.3.1. Оценка переходного процесса при ступенчатом воздействии.
- •11.3.2. Оценка качества управления при периодических возмущениях
- •12.1. Корневой метод оценки качества управления
- •12.2. Интегральные критерии качества
- •13.1. Теоретическое обоснование
- •13.2. Основные соотношения между вчх и переходной характеристикой
- •2. Сау с вогнутой вчх (рис.97а кривая 1) не имеет перерегулирования, то есть ей соответствует монотонная переходная характеристика (рис.97б кривая 1).
- •13.3. Метод трапеций
- •14.1. Синтез сау
- •14.1.1. Включение корректирующих устройств
- •14.1.2. Синтез корректирующих устройств.
- •14.2. Коррекция свойств сау изменением параметров звеньев
- •1 4.2.1. Изменение коэффициента передачи
- •14.2.2. Изменение постоянной времени звена сау
- •15.1. Коррекция свойств сау включением последовательных корректирующих звеньев
- •15.1.1. Включение интегрирующего звена в статическую сау
- •15.1.2. Включение апериодического звена
- •15.1.3. Включение форсирующего звена
- •15.1.4. Включение звена со сложной передаточной функцией
- •15.2. Последовательная коррекция по задающему воздействию
- •15.3. Коррекция с использованием неединичной обратной связи
- •15.4. Компенсация возмущающего воздействия
10.3. Анализ устойчивости по лчх
Оценку устойчивости по критерию Найквиста удобнее производить по ЛЧХ разомкнутой САУ. Очевидно, что каждой точке АФЧХ будут соответствовать определенные точки ЛАЧХ и ЛФЧХ.
Пусть известны частотные характеристики двух разомкнутых САУ (1 и 2), отличающихся друг от друга только коэффициентом передачи K1 < K2. Пусть первая САУ устойчива в замкнутом состоянии, вторая нет.(рис.79).
Если W1(p) - передаточная функция первой САУ, то передаточная функция второй САУ W2(p) = K W1(p), где K = K2/K1. Вторую САУ можно представить последовательной цепочкой из двух звеньев с передаточными функциями K (безынерционное звено) и W1(p), поэтому результирующие ЛЧХ строятся как сумма ЛЧХ каждого из звеньев.
Поэтому ЛАЧХ второй САУ: L2( ) = 20lgK + L1( ),
а ЛФЧХ: 2( ) = 1( ).
Пересечениям АФЧХ вещественной оси соответствует значение фазы = - . Это соответствует точке пересечения ЛФЧХ = - линии координатной сетки. При этом, как видно на АФЧХ, амплитуды A1( ) < 1, A2( ) > 1, что соответствует на САЧХ значениям L1( ) = 20lgA1( ) < 0 и L2( ) > 0.
Сравнивая АФЧХ и ЛФЧХ можно заключить, что система в замкнутом состоянии будет устойчива, если значению ЛФЧХ = - будут соответствовать отрицательные значения ЛАЧХ и наоборот. Запасам устойчивости по модулю h1 и h2, определенным по АФЧХ соответствуют расстояния от оси абсцисс до ЛАЧХ в точках, где = - , но в логарифмическом масштабе.
Особыми точками являются точки пересечения АФЧХ с единичной окружностью. Частоты c1 и c2, при которых это происходит называют частотами среза.
В точках пересечения A( ) = 1 = > L( ) = 0 - ЛАЧХ пересекает горизонтальную ось. Если при частоте среза фаза АФЧХ c1 > - (рис.79а кривая 1), то замкнутая САУ устойчива. На рис.79б это выглядит так, что пересечению ЛАЧХ горизонтальной оси соответствует точка ЛФЧХ, расположенная выше линии = - . И наоборот для неустойчивой замкнутой САУ (рис.79а кривая 2) c2 < - , поэтому при = c2 ЛФЧХ проходит ниже линии = - . Угол 1 = c1-(- ) является запасом устойчивости по фазе. Этот угол соответствует расстоянию от линии = - до ЛФЧХ.
Исходя из сказанного, критерий устойчивости Наквиста по логарифмическим ЧХ, в случаях, когда АФЧХ только один раз пересекает отрезок вещественной оси [- ;-1], можно сформулировать так: для того, чтобы замкнутая САУ была устойчива необходимо и достаточно, чтобы частота, при которой ЛФЧХ пересекает линию = - , была больше частоты среза.
Если АФЧХ разомкнутой САУ имеет сложный вид (рис.80), то ЛФЧХ может несколько раз пересекать линию = - . В этом случае применение критерия Найквиста несколько усложняется. Однако во многих случаях данной формулировки критерия Найквиста оказывается достаточно.
11.1. Теоретическое обоснование метода d-разбиений
Изменение параметров САУ, например, с целью оптимизации, приведет к изменению коэффициентов уравнения динамики. Останется ли при этом САУ устойчивой - неизвестно. Критерии устойчивости об этом ничего не говорят. Рассмотрим метод определения границ допустимых изменений параметров, при которых САУ не теряет устойчивости.
Приведем характеристическое уравнение замкнутой САУ к виду:
D(p) = pn + c1 pn -1 + c2 pn-2 + ... + cn = 0,
где c0 = a0 /a0 = 1, c1 = a1 /a0 и т.д. При некоторых конкретных значениях c1 ,c2 ,...,cn уравнение имеет единственное решение, то есть единственный набор корней (p1 , p2,...,pn ). По их расположению на комплексной плоскости можно судить об устойчивости САУ при заданных параметрах. Если изменить какой-либо параметр САУ, например коэффициента передачи, то изменятся и коэффициенты характеристического уравнения D(p) = 0 и станут равными cн1 ,cн2 ,...,cнn . Уравнение примет вид:
Dн(p) = pn + cн1 pn -1 + cн2 pn -2 + ... + cнn = 0.
Э
то
уже другое уравнение и оно также имеет
единственное решение (pн1 ,pн2 ,...,pнn ),
отличающееся от (p1 ,p2 ,...,pn ).
Если плавно менять значение параметра
САУ, то коэффициенты уравнения тоже
будут плавно изменяться, а его корни
будут перемещаться по комплексной
плоскости (рис.81).
Каждый
уникальный набору коэффициентов c1 ,c2 ,...,cn можно
изобразить точкой в пространстве
коэффициентов, по осям которого
откладываются значения
коэффициентов c1 ,c2 ,...,cn .
Так уравнению третьей степени соответствует
трехмерное пространство коэффициентов
(рис.82). П
усть
точка N с
координатами (cN1 ,cN2,cN3) соответствует
уравнению, имеющему решение (pN1,pN2,pN3),
точка M с координатами (cM1 ,cM2 ,cM3) соответствует
уравнению, имеющему решение (pM1 ,pM2 ,pM3).
При изменении какого-либо параметра
САУ коэффициенты характеристического
уравнения будут изменяться, при этом
точка в пространстве коэффициентов,
соответствующая данному уравнению
будет перемещаться по некоторой
траектории, например из положения N в
положение M.
Этому перемещению будет соответствовать
и перемещение корней (pN1,pN2,pN3) на
комплексной плоскости в
положение (pM1 ,pM2 ,pM3) (аналогично
рис.81).
При этом движении некоторые корни будут переходить через мнимую ось комплексной плоскости из левой полуплоскости в правую и наоборот. В момент перехода такой k-й корень примет значение pK = j K, а коэффициенты уравнения будут иметь определенные значения cK1,cK2,cK3, определяющие в пространстве коэффициентов точку K. Подставим корень pK в характеристическое уравнение, получим тождество:
D(pK ) = (j K)3 + cK1(j K)2 + cK2 (jK ) + cK3 = 0
Меняя w от - до + , и находя при каждой частоте все возможные сочетания коэффициентов c1 ,c2 ,...,cn , удовлетворяющих уравнению
D(j ) = (j )n + c1 (j )n-1 + c2 (j )n-2 + ... + cn = 0,
можно построить в n-мерном пространстве коэффициентов сложную поверхность S, разделяющую его на области, называемое D-областями. Полученное уравнение называетсяуравнением границы D-разбиения.
Переход из одной D-области в другую через поверхность S соответствует переходу одного или нескольких корней через мнимую ось в плоскости корней. То есть каждая точка внутри определенной D-области соответствует уравнению с определенным количеством левых и правых корней. Поэтому области обозначают D(m) по числу m правых корней.
Достаточно взять любую точку в пространстве коэффициентов и найти для нее число правых корней. Затем, двигаясь по пространству коэффициентов через границу S, можно выявить обозначения всех других областей. Особый интерес представляет область D(0), которой соответствуют уравнения с полным отсутствием правых корней, называемаяобластью устойчивости. Описанный метод определения областей устойчивости называется методом D-разбиений.
Не обязательно строить сложную n-мерную картину D-разбиения, можно изменять значения, например, только двух коэффициентов, оставляя другие коэффициенты постоянными. Границу D-разбиения S можно строить не только также и в пространстве конкретных параметров системы, от которых зависят данные коэффициенты.
11.2. D-разбиение по одному параметру
Пусть необходимо выявить влияние на устойчивоять САУ, например, коэффициента усиления K. Приведем характеристическое уравнение к виду D(p) = S(p) + K N(p), выделив члены, не зависящие от K в полином S(p), а в остальных членах, линейно зависящих от K, вынесем его за скобки. Граница D-разбиения задается уравнением
D(j ) = S(j ) + K N(j ) = 0, => K = -S(j )/N(j ) = X( ) + jY( ).
И
зменяя
w от -
до
+
,
будем вычислять X(
) и Y(
) и
по ним строить точки границы D-разбиения.
Пространство коэффициентов представляется
системой координат X-Y (рис.83а).
Обычно строят только половину кривой
(
=
[0, +
),
другую половину достраивают симметрично
относительно вещественной оси.
Если в плоскости корней двигаться вдоль мнимой оси от - до + и штриховать ее слева (рис.83б), то это будет соответствовать движению вдоль линии D-разбиения при изменении w от - до + и штриховке ее также слева. Переходу корня в плоскости корней из штрихованной полуплоскости в нештрихованную вдоль стрелки 1 соответствует аналогичный переход через границу D-разбиения вдоль стрелки 1, и наоборот. Если пересекается область с двойной штриховкой (точки A, В, C), то в плоскости корней мнимую ось пересекает пара комплексно сопряженных корней.
Если известно количество правых корней, соответствующее хотя бы одной D-области, то двигаясь от нее через границы с учетом штриховок, можно обозначить все остальные области. Область с наибольшим количеством штриховок является претендентом на область устойчивости. Нужно взять любую точку из этой области и при соответствующем значении K проверить систему на устойчивость любым методом.
Есть одна особенность. Так как K - вещественное число, то Y( ) = 0, поэтому нас интересует не вся область устойчивости, а лишь отрезок вещественной оси в этой области, то есть K = X( ).