Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
билеты по информ. (2).docx
Скачиваний:
24
Добавлен:
23.04.2019
Размер:
231.24 Кб
Скачать

37. Классификация эвм по функциональным возможностям и размерам

По функциональным возможностям и размерам ЭВМ можно разделить (рис. 1.1) на супер-ЭВМ, большие, малые и микро-ЭВМ.

Рис. 1.1. Классификация ЭВМ по функциональным возможностям и размерам

 Функциональные возможности ЭВМ обуславливаются основными технико-эксплуатационными характеристиками.

Некоторые сравнительные параметры названных классов современных ЭВМ приведены в таблице 1.2.

Табл. 1.2.

Сравнительные параметры различных классов ЭВМ

Параметр

Супер-ЭВМ

Большие ЭВМ

Малые ЭВМ

Микро-ЭВМ

Производит.

MIPS

1000-100000

10-1000

1-100

1-100

Емкость ОП

Мбайт

2000-10000

64-10 000

4-512

4-256

Емкость ВЗУ

Гбайт

500-5000

50-1000

2-100

0,5-10

Разрядность

бит

64-128

32-64

16-64

8-64

Исторически первыми появились большие ЭВМ, элементная база которых прошла путь от электронных ламп до интегральных схем со сверхвысокой степенью интеграции.

Супер-ЭВМ - мощные, высокоскоростные вычислительные машины (системы) с производительностью от сотен миллионов до триллионов операций с плавающей точкой в секунду. Супер-ЭВМ выгодно отличаются от больших универсальных ЭВМ по быстродействию числовой обработки, а от специализированных машин, обладающих высоким быстродействием в сугубо ограниченных областях, возможностью решения широкого класса задач с числовыми расчетами.

При производительности порядка нескольких GFLOPS можно еще обойтись одним векторно-конвейерным процессором (однопроцессорные супер-ЭВМ). Создание высокопроизводительной супер-ЭВМ с быстродействием порядка TFLOPS по современной технологии на одном процессоре не представляется возможным. Это связано с ограничением, обусловленным конечным значением скорости распространения электромагнитных волн (300 000 км/сек), так как время распространения сигнала на расстояние нескольких миллиметров (линейный размер стороны микропроцессора) при быстродействии 100 млрд. оп/с становится соизмеримым с временем выполнения одной операции. Поэтому супер-ЭВМ с такой производительностью создаются в виде высокопараллельных многопроцессорных вычислительных систем.

В настоящее время в мире насчитывается несколько тысяч супер-ЭВМ, начиная с простых офисных до мощных: Cyber 205 (фирмы Control Data), VP 2000 (фирмы Fujitsu), VPP500 (фирмы Siemens) и др., производительностью несколько десятков GFLOPS.

Большие ЭВМ часто называют мэйнфреймами (Mainframe). Они поддерживают многопользовательский режим работы (обслуживают одновременно от 16 до 1000 пользователей).

Основные направления эффективного применения мэйнфреймов - это решение научно-технических задач, работа в вычислительных системах с пакетной обработкой информации, работа с большими базами данных, управление вычислительными сетями и их ресурсами. Последнее направление - использование мэйнфреймов в качестве больших серверов вычислительных сетей - часто отмечается специалистами среди наиболее актуальных.

Примерами больших ЭВМ может служить семейство больших машин ЕС ЭВМ, IBM ES/9000 (1990г.), IBM S/390 (1997г.), а также японские компьютеры М1800 фирмы Fujitsu.

Малые ЭВМ (мини-ЭВМ) - надежные, недорогие и удобные в эксплуатации компьютеры, обладающие несколько более низкими по сравнению с мэйнфреймами возможностями. В многопользовательском режиме поддерживаются 16 - 512 пользователей.

Основные их особенности:

¨     широкий диапазон производительности в конкретных условиях применения,

¨     аппаратная реализация большинства системных функций ввода-вывода информации,

¨     простая реализация многопроцессорных и многомашинных систем,

¨     высокая скорость обработки прерываний,

¨     возможность работы с форматами данных различной длины.

К достоинствам мини-ЭВМ можно отнести:

1)    специфическую архитектуру с большой модульностью;

2)    лучшее, чем у мэйнфреймов, соотношение производительность/ стоимость;

3)    широкая номенклатура периферийных устройств;

4)    повышенную точность вычислений.

Мини-ЭВМ успешно применяются:

¨        в качестве управляющих вычислительных комплексов.

¨        вычислений в многопользовательских вычислительных системах,

¨        в системах автоматизированного проектирования,

¨        в системах моделирования и искусственного интеллекта,

Одними из первых мини-ЭВМ были компьютеры PDP-11 фирмы DEC (США), Система Малых ЭВМ (СМ ЭВМ): СМ1, 2,3,4,1400, 1700 и др. В настоящее время семейство мини-ЭВМ включает большое число моделей от VAX-11 до VAX 8000, супермини-ЭВМ класса VAX 9000 и др.

Микро-ЭВМ по назначению можно разделить на универсальные и специализированные.

Универсальные многопользовательские ЭВМ - это мощные микро ЭВМ, используемые в компьютерных сетях, оборудованные несколькими видеотерминалами и функционирующие в режиме разделения времени, что позволяет эффективно работать на них сразу нескольким пользователям. Это универсальные серверы (Server) компьютерных сетей, обрабатывающие запросы от всех станций сети, выделенный для обработки запросов от всех станций вычислительной сети, предоставляющий этим станциям доступ к общим системным ресурсам (вычислительным мощностям, базам данных, библиотекам программ, принтерам, факсам и др.) и распределяющий эти ресурсы.

Эту интенсивно развивающуюся группу компьютеров обычно относят к микро-ЭВМ, но по своим характеристикам мощные серверы скорее можно отнести к малым ЭВМ и даже к мэйнфреймам, а супер серверы приближаются к супер-ЭВМ.

Универсальные однопользовательские ЭВМ или персональные компьютеры (ПК) должны удовлетворять требованиям общедоступности и универсальности применения и иметь следующие характеристики:

¨        малую стоимость, находящуюся в пределах доступности для индивидуального покупателя;

¨        автономность эксплуатации без специальных требований к условиям окружающей среды;

¨        гибкость архитектуры, обеспечивающую ее адаптивность к разнообразным применениям в сфере управления, науки, образования, в быту;

¨        «дружественность» операционной системы и прочего программного обеспечения для пользователя;

¨        высокую надежность работы (более 5000 ч. наработки на отказ).

Наибольшей популярностью в настоящее время пользуется ПК архитектурного направления (платформы) IBM с микропроцессорами фирмы Intel. По конструктивным особенностям ПК можно разделить на стационарные и переносные (мощные переносные компьютеры (рабочие станции) массой до 15 кг; портативные (наколенные) компьютеры типа «LapTop» массой 5-10кг; компьютеры-блокноты (Note Book и Sub Note Book) массой 1,5-4 кг и др.).

Специализированные ЭВМ ориентированы на решение определенного (постоянного) класса задач в течение периода своей эксплуатации. Ориентация специализированных ЭВМ осуществляется различными способами:

¨       специальной аппаратурной организацией самих ЭВМ или их внешних связей;

¨       созданием для ЭВМ специального программного обеспечения;

¨       введением дополнительных аппаратных блоков, расширяющих те или иные функции, возлагаемые на ЭВМ,

¨       и др.

Сферы использования таких ЭВМ как в нашей стране, так и за рубежом имеют устойчивую тенденцию к расширению. Можно выделить следующие основные области применения специализированных ЭВМ:

1)  промышленное производство и транспорт;

2)  военная техника и оборона;

3)  непромышленная сфера.

Примером специализированных однопользовательских микро-ЭВМ, ориентированных для выполнения определенного круга задач (графических, инженерных, издательских и др.), являются рабочие станции (Work Station).

Специализированные многопользовательские микро-ЭВМ (спец. серверы) осуществляющие управление базами и архивами данных, многопользовательскими терминалами, поддерживающими факсимильную связь, электронную почту и др.

Специализированные серверы используются для устранения наиболее «узких» мест в работе сети, а именно: создания и управления базами и архивами данных, поддержка многоадресной факсимильной связи и электронной почты, управления многопользовательскими терминалами (принтером, плоттером и др.

Файл-сервер используется для работы с файлами данных, имеет объемные дисковые ЗУ.

Архивационный сервер (сервер резервного копирования) предназначен для резервного копирования информации, использует накопители на магнитной ленте (стриммеры) со сменными картриджами.

Факс-сервер, почтовый сервер - выделенные компьютеры для организации эффективной многоадресной факсимильной связи или электронной почты.

Встраиваемые микро-ЭВМ входят составным элементом в промышленные и транспортные системы, технические устройства и аппараты, бытовые приборы. Они способствуют существенному повышению их эффективности функционирования, улучшению технико-экономических и эксплуатационных характеристик.

Специализированные однопользовательские ЭВМ или рабочие станции (Work station), - это однопользовательская система с мощным процессором и многозадачной ОС, имеющая развитую графику с высоким разрешением, большую дисковую и оперативную память и встроенные сетевые средства.

Рабочие станции появились на рынке ЭВМ почти одновременно с ПК и находились впереди по своим вычислительным возможностям. Переломным моментом в развитии рабочих станций стало появление новой архитектуры микропроцессоров RISC, позволившей резко поднять производительность ЭВМ. Современные рабочие станции сопоставимы, а иногда даже превосходят ПК по своим характеристикам. Современная рабочая станция - это не просто большая вычислительная мощность, это тщательно сбалансированные возможности всех подсистем машины, чтобы ни одна из них не стала «узким местом», сводя на нет преимущества других. Всё это в значительной мере и определяло их область применения и проблемную ориентацию: автоматизированное проектирование, банковское дело, управление производством, разведка и добыча нефти, связь, издательская деятельность и др.

Лидером на мировом рынке рабочих станций является американская фирма Sun Microsystems. Архитектура SPARC, разработанная фирмой Sun и использующаяся в её машинах, стала фактически стандартом де-факто. Традиционно доминирующей ОС на рынке рабочих станций была система Unix и ей подобные системы (Solaris и др). В последнее время наблюдается некоторый рост использования операционных систем VAX VMS и в ещё большей степени Windows NT.

39. Принципы строения и функционирования ЭВМ Джона фон Неймана

Большинство современных ЭВМ функционируют на основе принципов, сформулированных в 1945 году американским ученым венгерского происхождения Джоном фон Нейманом:

1.      Принцип двоичного кодирования. Согласно этому принципу, вся информация, поступающая в ЭВМ, кодируется с помощью двоичных символов (сигналов).

2.      Принцип программного управления. Компьютерная программа состоит из набора команд, которые выполняются процессором автоматически друг за другом в определенной последовательности.

3.      Принцип однородности памяти. Программы и данные хранятся в одной и той же памяти. Поэтому ЭВМ не различает, что хранится в данной ячейке памяти - число, текст или команда. Над командами можно выполнять такие же действия, как и над данными.

4.      Принцип адресности. Структурно основная память состоит из пронумерованных ячеек, любая из которых  которая  доступна процессору в произвольный момент времени.

Согласно фон Нейману, ЭВМ состоит из следующих основных блоков (рис 2.1): 1) устройства ввода/вывода информации; 2) памяти ЭВМ; 3) процессора, включающего устройство управления (УУ) и арифметико-логическое устройство (АЛУ)

В ходе работы ЭВМ информация через устройства ввода попадает в память. Процессор извлекает из памяти обрабатываемую информацию, работает с ней и помещает в нее результаты обработки. Полученные результаты через устройства вывода сообщаются человеку.

Память ЭВМ состоит из двух видов памяти: внутренняя (оперативная) и внешняя (долговременная) память.

 О перативная память – это электронное устройство, которое хранит информацию, пока питается электроэнергией.

Внешняя память – это различные магнитные носители (ленты, диски), оптические диски.

За прошедшие десятилетия процесс совершенствования ЭВМ шел в рамках приведенной обобщенной структуры.

40. Базовая аппаратная конфигурация

системный блок

монитор

клавиатура

мышь

Внутренние устройства системного блока

материнская плата

жесткий диск

дисковод гибких дисков

дисковод компакт-дисков CD ROM

Периферийные устройства персонального компьютера

 

Персональный компьютер – универсальная техническая система. Его конфигурацию (состав оборудования) можно гибко изменять по мере необходимости. Тем не менее, существует понятие базовой конфигурации, которую считают типовой. В таком комплекте компьютер обычно поставляется. Понятие базовой конфигурации может меняться. В настоящее время в базовой конфигурации рассматривают четыре устройства: системный блокмониторклавиатуру; манипулятор "мышь".

41. Технология экспертных систем Наибольший прогресс среди компьютерных информационных систем отмечен в области разработки экспертных систем, основанных на использовании искусственного интеллекта. Экспертные системы дают возможность менеджеру или специалисту получать консультации экспертов по любым проблемам, о которых этими системами накоплены знания. Экспертная система (ЭС) – это компьютерные программы, созданные для выполнения тех видов деятельности, которые под силу человеку-эксперту. Они работают таким образом, что имитируют образ действий человека-эксперта, и существенно отличаются от точных, хорошо аргументированных алгоритмов и не похожи на математические процедуры большинства традиционных разработок.  Если при традиционном процедурном программировании компьютеру необходимо сообщить что и как он должен делать, то общим для экспертных систем является то, что они имеют дело со сложными проблемами: - которые недостаточно хорошо понимаются или изучены; - для которых нет четко заданных алгоритмических решений; - которые могут быть исследованы с помощью механизма символических рассуждений - Специфика экспертных систем состоит в том, что они используют: - механизм автоматического рассуждения (вывода); - “слабы методы”, такие как поиск или использование эвристических правил (эвристик).  Эвристики не гарантируют получение оптимального результата с такой же уверенностью, как обычные алгоритмы, используемые для решения задач в рамках технологии поддержки принятия решений. Однако часто они дают в достаточной степени приемлемые решения для их практического использования. Все это делает возможным использовать технологию экспертных систем в качестве советующих систем.   Основными требованиями к ЭС являются: - использование знаний связано с конкретной предметной областью; - приобретение знаний от эксперта; - определение реальной и достаточно сложной задачи; - наделение системы способностями эксперта.    Эксперты – это квалифицированные специалисты в своих областях деятельности – финансисты, экономисты, врачи и т.д., которые имеют огромный багаж знаний о конкретной предметной области, имеют большой опыт работы в этой области, а также умеют точно сформулировать и правильно решить задачу.

42. Экспе́ртная систе́ма (ЭС, expert system) — компьютерная программа, способная частично заменить специалиста-эксперта в разрешении проблемной ситуации. Современные ЭС начали разрабатываться исследователями искусственного интеллекта в 1970-х годах, а в 1980-х получили коммерческое подкрепление. Предтечи экспертных систем были предложены в 1832 годуС. Н. Корсаковым, создавшим механические устройства, так называемые «интеллектуальные машины», позволявшие находить решения по заданным условиям, например определять наиболее подходящие лекарства по наблюдаемым у пациента симптомам заболевания[1].

В информатике экспертные системы рассматриваются совместно с базами знаний как модели поведения экспертов в определенной области знаний с использованием процедур логического вывода и принятия решений, а базы знаний — как совокупность фактов и правил логического вывода в выбранной предметной области деятельности.

Похожие действия выполняет такой программный инструмент как Мастер (Wizard). Мастера применяются как в системных программах так и в прикладных для упрощения интерактивного общения с пользователем (например, при установке ПО). Главное отличие мастеров от ЭС — отсутствие базы знаний — все действия жестко запрограммированы. Это просто набор форм для заполнения пользователем.

Другие подобные программы — поисковые или справочные (энциклопедические) системы. По запросу пользователя они предоставляют наиболее подходящие (релевантные) разделы базы статей (представления об объектах областей знаний, их виртуальную модель).

43. По назначению классификацию экспертных систем можно провести следующим образом:

  • диагностика состояния систем, в том числе мониторинг (непрерывное отслеживание текущего состояния);

  • прогнозирование развития систем на основе моделирования прошлого и настоящего;

  • планирование и разработка мероприятий в организационном и технологическом управлении;

  • проектирование или выработка четких предписаний по построению объектов, удовлетворяющих поставленным требованиям;

  • автоматическое управление (регулирование);

  • обучение пользователей и др.

По предметной области наибольшее количество экспертных систем используется в военном деле, геологии, инженерном деле, информатике, космической технике, математике, медицине, метеорологии, промышленности, сельском хозяйстве, управлении процессами, физике, филологии, химии, электронике, юриспруденции.

Классификация экспертных систем по методам представления знаний делит их на традиционные и гибридные. Традиционные экспертные системы используют, в основном, эмпирические модели представления знаний и исчисление предикатов первого порядка. Гибридные экспертные системы используют все доступные методы, в том числе оптимизационные алгоритмы и концепции баз данных.

По степени сложности экспертные системы делят на поверхностные и глубинные. Поверхностные экспертные системы представляют знания в виде правил «ЕСЛИ-ТО». Условием выводимости решения является безобрывность цепочки правил. Глубинные экспертные системы обладают способностью при обрыве цепочки правил определять (на основе метазнаний) какие действия следует предпринять для продолжения решения задачи. Кроме того, к сложным относятся предметные области в которых текст записи одного правила на естественном языке занимает более 1/3 страницы.

Классификация экспертных систем по динамичности делит экспертные системы на статические и динамические. Предметная область называется статической, если описывающие ее исходные данные не изменяются во времени. Статичность области означает неизменность описывающих ее исходных данных. При этом производные данные (выводимые из исходных) могут и появляться заново, и изменяться (не изменяя, однако, исходных данных).

Если исходные данные, описывающие предметную область, изменяются за время решения задачи, то предметную область называют динамической. В архитектуру динамической экспертной системы, по сравнению со статической, вводятся два компонента:

  • подсистема моделирования внешнего мира;

  • подсистема связи с внешним окружением.

Последняя осуществляет связи с внешним миром через систему датчиков и контроллеров. Кроме того, традиционные компоненты статической экспертной системы (база знаний и механизм логического вывода) претерпевают существенные изменения, чтобы отразить временную логику происходящих в реальном мире событий.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]