Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Algebra_1.LekPr.Modul1.doc
Скачиваний:
7
Добавлен:
22.04.2019
Размер:
2.21 Mб
Скачать

1.9. Основные типы алгебраических структур.

Пусть и два произвольных непустых множества. Декартовым произведением этих множеств называется множество всевозможных упорядоченных пар вида , где . При этом две пары и , где , считаются равными, если . Если , тогда множество называется декартовым квадратом множества .

Пусть . Внутренним законом композиции на множестве называется произвольное отображение декартова квадрата во множество . Внутренний закон композиции на множестве каждой паре элементов множества ставит в соответствие определенный элемент множества , который принято обозначать в виде сочетания трёх символов: элементов и некоторого знака их соединяющего и одновременно позволяющего отличать друг от друга различные законы композиции, например,

,

и т.д.

Простейшими примерами внутренних законов композиции на множестве являются арифметические операции сложения, вычитания и умножения действительных чисел, которые паре действительных чисел ставят в соответствие их сумму, разность и произведение,

.

Введенное выше поэлементное сложение матриц является внутренним законом композиции на множестве , а умножение матриц – внутренним законом композиции на множестве .

Пусть . Внешним законом композиции на множестве над множеством называется произвольное отображение множества во множество .

Примером внешнего закона композиции на множестве матриц над множеством действительных чисел является операция умножения матрицы на число,

.

Задание на некотором множестве одного или нескольких законов композиции, внутренних или (и) внешних, обладающих некоторыми стандартными свойствами, определяет на этом множестве различные алгебраические структуры (группы, поля, кольца, линейного пространства, алгебры и т.д.).

Если внутренний закон композиции на множестве , записываемый как умножение, обладает свойствами:

1) (ассоциативность)

для любых из ;

2) в существует такой элемент , что

(существование единицы)

для каждого из ;

3) для каждого элемента из найдется такой элемент , что

(обратимость)

тогда говорят, что закон композиции определяет на структуру группы. Элемент называется при этом единицей группы, а элемент из 3) – обратным к элементом и обозначается .

Если наряду со свойствами 1) – 3) выполняется свойство

4) (коммутативность)

для любых из , такая группа называется абелевой. Свойства 1) – 3) называются аксиомами группы, а свойства 1) – 4) аксиомами абелевой группы. В абелевой группе закон композиции записывается обычно как сложение, в связи с чем её аксиомы принимают вид

1’) ;

2’) в существует элемент такой, что

;

3’) для любого из найдется элемент , такой, что

;

4’) .

Элемент называется нулем абелевой группы, а элемент из аксиомы 3’) – противоположным к элементу и обозначается .

Пример 3. а) Множество является мультипликативной группой, т.е. операция умножения матриц определяет на этом множестве структуру группы.

◄ Действительно, из свойства 5) обратимых матриц следует, что умножение матриц является внутренним законом композиции на множестве . Аксиома группы 1) является следствием свойства 3) умножения матриц. Единичная матрица, очевидно, обратима, так как , откуда следует аксиома группы 2), . Аксиома группы 3) является следствием свойства 2) обратимых матриц. ►

б) Множество является аддитивной абелевой группой, т.е. операция сложения матриц определяет на этом множестве структуру абелевой группы.

◄ Очевидно, что определенное выше поэлементное сложение матриц является внутренним законом композиции на множестве , а аксиомы абелевой группы являются следствием свойств 1) – 4) сложения матриц. ►

Если на множестве определены два внутренних закона композиции, которые записываются как сложение и умножение и обладают свойствами:

1) сложение определяет на структуру абелевой группы;

2) ;

3) для любых из ,

тогда говорят, что на множестве задана структура кольца. Если при этом по умножению существует единица, это кольцо называется кольцом с единицей, а если операция умножения коммутативна, кольцо называется коммутативным.

Пример 4. а) Операции сложения и умножения чисел задают на множестве структуру коммутативного кольца с единицей.

б) Операции сложения и умножения матриц задают на множестве , , структуру некоммутативного кольца с единицей.

Коммутативное кольцо с единицей, в котором все отличные от нуля элементы обратимы, называется полем. Важнейшими примерами полей являются поле рациональных чисел и поле действительных чисел .

Пусть задано непустое множество , элементы которого мы будем называть векторами, и поле с единицей 1. Если на множестве определены внутренний закон композиции, записываемый как сложение векторов,

,

и внешний закон композиции над полем , записываемый как умножение вектора на скаляр,

,

и эти законы обладают свойствами:

1) сложение векторов определяет на структуру абелевой группы;

2) ,

3) ,

4) ,

5) ,

тогда говорят, что на множестве задана структура линейного пространства над полем .

Пример 5. Операции сложения матриц и умножения матрицы на число задают на множестве структуру линейного пространства над полем или кратко структуру действительного линейного пространства.

Непустое множество , на котором заданы два внутренних закона композиции (записываемых как сложение и умножение) и один внешний закон композиции над полем (записываемый как умножение на число), называется алгеброй над полем , если:

1) сложение и умножение задают на структуру кольца,

2) сложение и умножение на число задают на структуру линейного пространства над полем ,

3) .

Если умножение коммутативно, алгебра называется коммутативной, если умножение обладает единицей, алгебра называется алгеброй с единицей.

Пример 6. Из лекций I и II следует, что введённые там операции сложения и умножения матриц с операцией умножения матрицы на число задают на множестве при структуру некоммутативной алгебры с единицей.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]