
- •Основы естественной энергетики
- •Раздел первый аккумулированная энергия Основные положения концепции естественной энергетики
- •Введение
- •Часть первая физика естественных энергетических процессов Введение
- •1. Осцилляторы газа
- •2. Нейтрон – сложная структура
- •3. Природа постоянной Авогадро и единицы массы в системе си
- •4. Температура и вакуум
- •5. Термодинамика
- •6. Механизм электродинамического взаимодействия осцилляторов
- •7. Фазовый переход высшего рода (фпвр)
- •8. Горение органического топлива – частичный фпвр
- •9. Естественный свет
- •10. Строение твердого тела
- •11. Жидкости и пары
- •12. Электрический ток. Лазер
- •Скорость электрического тока
- •13. Электрический аккумулятор
- •14. Строение атома
- •Маленький эпилог
- •1.2. Структура и механизм распада молекул азота
- •1.3. Баланс продуктов азотной реакции
- •1.4. Теплота азотной реакции
- •1.5. Источники плазмы и электронов
- •1.6. Инициирующие воздействия
- •Химические реакции
- •Ядерные реакции
- •Повышение температуры
- •Электрический разряд
- •1.6.6. Лазерное излучение
- •Оценка энергии инициированного лазером взрыва атмосферного воздуха
- •Электромагнитный импульс
- •Концентрированные потоки электронов и электрино
- •1.6.9. Детонация
- •1.6.10. Стоячие волны давления
- •1.6.11. Микровзрывы, кавитация
- •1.6.12. Катализаторы
- •1.6.12.1. Механизм катализа
- •2. Азотный термодинамический цикл работы двигателей внутреннего сгорания
- •2.1. Углерод в двигателях внутреннего сгорания
- •3. Паровая машина внутреннего сгорания замкнутого цикла
- •4. Азотные циклы котельных и газотурбинных установок
- •5. Кавитационные энергоустановки (кэу)
- •5.1. Кавитация как возбудитель ядерной реакции
- •5.2. Струйные и дроссельные кавитационные устройства
- •5.3. Вихревые теплогенераторы
- •5.4. Дисковые ультразвуковые теплогенераторы
- •5.5. Виброрезонансные установки
- •5.6. Электрогидравлические установки
- •6. Электрические генераторы
- •6.1. Процессы взаимодействия элементарных частиц в проводнике при генерации электрического тока
- •6.2. Магнитное поле Земли и его роль в генерации электричества и равновесии веществ
- •6.3. Генерация электрического тока в лазерах и аккумуляторах
- •6.4.Электрогенераторы на основе фазового перехода высшего рода
- •Фундаментальные константы физики Базиева
- •1. Самые мелкие частицы материи – субчастицы
- •2. Электрические заряды и их взаимодействие
- •3. Физическая природа гравитации
- •4. Система основных частиц материи
- •5. Особенности фазовых переходов вещества
- •6. Скорость распространения возмущений в веществе
- •7. Закономерности дискретных процессов
- •8. Форма атомов и состав периодической системы химических элементов
- •Литература
- •Раздел второй свободная энергия Введение
- •1.2. Орбитальное самовращение – основа энергетических процессов в природе.
- •2. Процессы в природных энергетических системах
- •2.1. Постоянный магнит как вечный двигатель.
- •2.1.1. Представление о магнитном потоке.
- •2.1.2. Механизм насыщения и возможность конструирования магнита.
- •2.2. Виброрезонансный энергообмен
- •2.2.1. Энергообмен между атомами, молекулами, телами и внешней средой с помощью динамического заряда
- •2.2.2. Физический механизм резонанса.
- •4. Термические энергоустановки.
- •5. Природные энергоустановки.
- •6. Электромагнитные энергоустановки.
- •6.1. Двигатели Сёрла.
- •6.2. Принцип взаимодействия магнитов и самовращения магнитных систем.
- •6.3. Электрогенераторы с неподвижными постоянными магнитами.
- •6.4. Магнитоэлектрический моментный двигатель Волегова в.Е.
- •7. Кориолисовые двигатели.
- •7.1. Тепловые кориолисовые двигатели.
- •7.2. Магнитные кориолисовые двигатели.
- •8. Виброрезонансные энергоустановки.
- •9. Обзор работ по энергетическим установкам, процессам и эффектам.
- •10.2. Механизм горения топлива.
- •10.3. Роль топлива в процессе горения.
- •10.4. Единый механизм взрыва.
- •10.4.1. Твердые взрывчатые вещества (вв).
- •10.4.2. Жидкие взрывчатые вещества.
- •10.4.3. Газообразные взрывчатые вещества и объемно-детонирующие смеси.
- •10.4.4. Ядерный взрыв.
- •10.4.5. Термоядерный взрыв.
- •10.5. Расчетные зависимости энергии взрыва.
- •10.5.1. Лазерный взрыв.
- •10.5.2. Воздушный взрыв.
- •10.5.3. Взрыв объемно – детонирующей смеси.
- •10.6. Методы защиты от несанкционированного взрыва.
- •10.6.1. Исключение запыленности и загазованности.
- •10.6.2. Исключение повторных инициирующих воздействий.
- •10.6.3. Опасность пароводяных и водородных взрывов.
- •10.6.4. Особенности взрывов естественных взрывчатых веществ и поражающие факторы.
- •10.6.5. Защита от несанкционированного взрыва воздуха в цилиндре двс многоразовым магнитным воздействием.
- •11. Опасность электромагнитных излучений.
- •12. Быть в согласии с природой.
- •12.1. Логика и алгоритм начала мироздания.
- •12.2. Аналогия микро- и наномира. Равновесие атомов с природой.
- •Структурные характеристики сферических атомов.
- •12.3. Равновесие энергообмена в человеке.
- •12.4. Сознание.
- •12.4.1. Хранение информации.
- •12.4.2. Получение информации.
- •12.4.3. Каждый человек сам себе бог.
- •13. Перспективы естественной природной энергетики.
- •13.1. Основные этапы разработки.
- •13.2. Установки естественной энергетики.
- •13.2.1. Двигатели внутреннего и внешнего сгорания (двс).
- •13.2.2. Газотурбинные установки (гту).
- •13.2.3. Котельные установки.
- •13.3. От персональных компьютеров и транспортных средств – к персональным энергоустановкам.
- •13.4. Как быть с ядерной энергетикой?
- •13.5. Энергетика и оружие, тэк и впк.
- •13.6. Энергетическая перспектива.
- •Литература
- •Раздел третий реализация идей Введение
- •Часть первая эволюция новых взглядов в физике и энергетике
- •1. От осознания теории к изобилию энергии
- •2. Отличие обычного и бестопливного горения Обычное горение
- •3. Вихревые структуры и «дыхание» атомов
- •4. Природа сверхпроводимости
- •5. Современное представление о механизме энерговыделения при разложении перекиси водорода
- •6. Структура первых химических элементов таблицы Менделеева
- •7. Самоподдерживающаяся многорезонаторная бегущая волна – основа экономности энергетических процессов в природе
- •8. Электринная энергетика с атомным приводом
- •8.1. Движители транспортных средств
- •8.2. Магнитные электроустановки
- •8.3. Катализаторы с резонансом
- •8.4. Шаровые молнии
- •9. Некоторые особенности перетока электрино в энергетических процессах
- •9.1. Физический механизм фазовых переходов
- •9.2. Электрическое сопротивление – рассеяние электрино
- •9.3. Природа радиоактивности
- •9.4. Отжиг металлов и магнетизм
- •9.5. Концентраторы магнитного потока
- •10. Почему?
- •10.1. Почему дистиллированная вода – диэлектрик?
- •10.2. Почему небо голубое, а скорость света – разная?
- •10.3. Почему воздушная атмосфера не падает на Землю, не улетает от нее и не взрывается?
- •10.4. Почему температура термодинамического цикла двигателя внутреннего сгорания при автотермическом режиме снижается, а мощность возрастает?
- •Часть вторая реализация новых идей в энергетике
- •11. Бестопливный автотермический режим самогорения воздуха в двигателе внутреннего сгорания
- •12. Решающие разработки, обеспечившие выход на бестопливный режим
- •12.1. Раздельная до- и внутрицилиндровая обработка воздуха
- •12.2. Определение роли топлива в процессе горения
- •12.3. Единство и возможность усиления магнитной и каталитической обработки веществ
- •13. Алгоритм настройки двигателя на режим самогорения воздуха
- •13.1. Выбор материалов и разработка конструкции оптимизатора для обработки воздуха
- •13.2. Настройка карбюратора
- •13.3. Регулировка зажигания
- •13.4. Отработка основных режимов двигателя
- •13.4.1. Пуск, прогрев и холостой ход
- •13.4.2. Движение со скоростью 60…70 км/ч и числом оборотов 2000…2500 об/мин.
- •13.4.3. Движение со скоростью 70 км/ч и числом оборотов более 3500 об/мин.
- •13.4.4. Переходные режимы, перегазовки
- •13.4.5. Сезонные особенности
- •13.4.6. Лучший вариант подготовки двигателя к автотермическому режиму.
- •14. Основные направления естественной энергетики
- •15. Социальные аспекты энергетики
- •15.1. Социальные последствия традиционной энергетики
- •15.2. Социальные перспективы естественной энергетики
- •16. Описание изобретений
- •16.1. Способ подготовки топливно-воздушной смеси и устройство для его осуществления
- •16.2. Устройство для обработки воздуха топливно-воздушной смеси
- •16.3. Способ повышения энергии рабочей среды для получения полезной работы
- •Заключение
- •Литература:
- •Раздел четвертый горение
- •1. Природные процессы бестопливной энергетики
- •Часть первая горение эфира
- •2. Физический механизм энергообмена
- •3. Секреты Тесла
- •4. Электрические машины – генераторы избыточной электрической энергии
- •4.1. Электрические трансформаторы
- •4.2. Электрические генераторы
- •4.3. Электрические двигатели
- •4.4. Электрогенераторы на постоянных магнитах
- •5. Физический механизм создания звуковых и ударных волн
- •5.1. Алгоритм и пример расчета параметров звуковой волны
- •5.2. Алгоритм разгона звуковой волны
- •5.3. Звуковые волны – природный источник энергии
- •6. Энергетическая основа жизни (и работы энергоустановок)
- •7. Отдельные энергетические эффекты эфира
- •7.1. Эффект полостных структур
- •7.2. Сверхтекучесть
- •7.3. Принудительная трансмутация и дезактивация химических элементов
- •Часть вторая горение воздуха
- •8. Резюме. Оптимизация процессов горения
- •9. К физическому механизму горения воздуха
- •9.1. Процессы с воздухом и кислородом
- •9.2. Процессы с топливом
- •10. Факторы и воздействия, способствующие горению
- •11. Пределы горючести воздуха
- •12. Необычность режима горения при уменьшении расхода бензина в двс
- •13. Меры обеспечения стабильной работы автомобильного двигателя в бестопливном режиме
- •13.1. Адресное микродозирование топлива
- •13.2. Первоочередные мероприятия для двс
- •13.2.1. Доцилиндровая обработка воздуха
- •13.2.2. Внутрицилиндровая обработка
- •13.2.3. Использование катализаторов
- •13.2.4. Адаптация зажигания
- •13.2.5. Повышение оборотов
- •13.2.6. Устранение несанкционированного подсоса топлива
- •13.2.7. Наложение высокого напряжения
- •14. Рекомендации по улучшению работы автомобильного двигателя при эксплуатации на азотном режиме
- •15. Рекомендации по организации перевода двигателей внутреннего и внешнего сгорания на азотный цикл с пониженным расходом топлива
- •16. Горелки и камеры сгорания
- •Часть третья горение воды Введение
- •17. Катализ и сжигание воды
- •18. Получение энергии электролизом
- •19. Кавитация как источник энергии
- •20. Повышение напора энергией природы
- •21. Самовращение в гидравлической энергетике
- •Часть четвертая горение души
- •22. Некоторые особенности энергетики человека
- •22.2. Электрическое шунтирование как метод лечения
- •22.3. Железа – электрический конденсатор
- •22.4. Вирусы – фрагменты наших клеток
- •22.5. Древние лабиринты – естественные высокочастотные электрические генераторы
- •23. Жить в согласии с законами природы. Говорят и по другому: красота спасет мир
- •23.1. Медикаменты, хирургия, облучения – враги или друзья
- •23.2. «Доходит как до жирафа»
- •23.3. Лавуазье – новатор или консерватор
- •23.4. О пользе нетрадиционных знаний
- •24. Новые источники природной энергии – главная основа естественной энергетики
- •25. Первоочередные работы по естественной энергетике
- •Постскриптум
- •Литература
- •Содержание
12. Электрический ток. Лазер
Определение тока: электрический ток есть упорядоченное вихревое движение электрино вокруг проводника, в котором траектория каждого электрино представлена винтовой линией с заходом в тело проводника или без захода в него.
Проводник с током
– это сложная электродинамическая
система, в которой роль материального
носителя тока и магнитного поля
одновременно выполняет электрино, заряд
которого
являет собой элементарный квант
электричества. Винтовая линия траектории
с переменным радиусом и шагом имеет вид
периодически нисходящей к проводнику
и восходящей от него спирали. Проекция
ее на плоскость, перпендикулярную оси
проводника, есть незамкнутая спиральная
линия, радиус которой за один оборот
уменьшается от
до
.
Совокупность всех траекторий образует
замкнутый круг, радиус которого от
поверхности проводника есть радиус
вихря цилиндрической формы.
Совершенно очевидно, что если положительно заряженные электрино совершают орбитальное движение вокруг проводника, то это возможно только в случае, когда атомы проводника обладают избыточным отрицательным зарядом, обусловливающим им отрицательный электрический потенциал. Поэтому рассмотрение этого электромагнитного явления на атомном и субатомном уровне возможно только с учетом свойств проводника. Положительные электрино регулярно (в соответствии с кристаллической решеткой проводника) притягиваются отрицательным полем, и, при приближении к положительным полям проводника, отталкиваются также регулярно, чем обеспечивается организованное вихревое движение.
Движение ансамбля электрино создает вокруг проводника магнитное поле, которое и принято называть круговым магнитным полем проводника. Шаговое перемещение этого положительного поля вдоль проводника есть его электрический ток
,
где – частота прохождения электрино через сечение проводника.
Скорость электрического тока
– есть единичная напряженность
электрического поля проводника (квант
напряженности), который по физической
сути есть отношение продольной силы
электрино к его заряду.
– гиромагнитная постоянная электрино.
отличается от скорости света
всего на 3,40299%, но отличается. Для техники
прошлого века это отличие было неуловимым,
поэтому в качестве электродинамической
постоянной приняли
.
Однако, спустя 4 года после публикации
своей знаменитой статьи по электродинамике,
в 1868 году, Дж. Максвелл усомнился в этом
и с участием ассистента Хоукина перемерил
ее значение. Результат
,
который отличается от истинной
электродинамической постоянной
всего на 0,66885%, остался никем непонятым,
в том числе и самим автором.
Орбиты электрино в поперечном к оси проводника сечении расположены одна над другой, образуя пакет электрино вихря или один электрино вихрь. Внешние и внутренние электрино в пакете движутся с одинаковой продольной скоростью .
Каждая частица развивает напряжение
;
(
– электрическая постоянная), а их
совокупность
в пакете – напряжение
линии. Квант магнитного потока есть
отношение напряжения одного электрино
к его круговой частоте
.
Отсюда напряжение линии
.
Магнитный поток проводника
.
– квант продольного смещения напряжения.
Магнитная индукция есть плотность магнитного потока, отнесенная к сечению элементарной траектории вихря
;
.
–
шаг вихря; расстояние между пакетами;
расстояние между орбитами – то есть
расстояние между частицам – электрино.
Максимальная индукция – при плотно
сжатых электрино, когда
– диаметру электрино,
технически
никогда не достижима, но является
ориентиром, например, для Токамака.
Недостижимость объясняется сильным
взаимным отталкиванием электрино при
их сближении: так, при
механическое напряжение в магнитном
потоке составит
,
до которого сжать магнитный поток ныне
не под силу.
Напряженность магнитного поля
есть отношение кольцевого тока к
межорбитальному расстоянию в пакете.
Если
-
частота прохождения электрино вдоль
проводника через данное сечение при
единичном токе
,
то
.
Число частиц электрино, принимаемых за
единицу времени
будет
(постоянная Франклина). Тогда: единица
тока в
определяется шаговым переносом
совокупности электрино, равной числу
Франклина. Также и: единица количества
электричества в
определяется шаговым переносом
совокупности электрино, равной числу
Франклина.
Если по параллельным проводникам ток течет в одном направлении, то наружные вихревые поля системы из 2-х проводников сливаются, образуя общий вихрь, охватывающий оба проводника, а между проводниками из-за встречного направления вихрей плотность магнитного потока уменьшается, вызывая снижение положительного напряжения поля. Итогом разности напряжений является сближение проводников. При встречном токе плотность магнитного потока и напряженность растет между проводниками, и они взаимно отталкиваются, но не друг от друга, а от межпроводникового пространства, более насыщенного энергией вихревых полей.
Для тока ведущая роль в проводниках
принадлежит атомам поверхностного
слоя. Рассмотрим алюминиевый проводник.
Его особенностью является оксидная
пленка
.
И физики, и химики эту молекулу считают
электронейтральной на том основании,
что атомы алюминия и кислорода взаимно
компенсируют валентность друг друга.
Если бы это было так, то алюминий не мог
бы проводить электричество, а он проводит,
и проводит хорошо, значит,
обладает избыточным отрицательным
зарядом.
Анализ показывает, что атом
содержит один избыточный электрон при
дефиците электрино, обусловливающие
ему значительный избыточный заряд
отрицательного знака:
,
где
– недостающее число электрино в атоме
алюминия;
– атомная масса,
-
атомное число алюминия.
Каждые две молекулы содержит 3 электрона связи.
Нижний радиус надпроводниковой части вихря можно принимать равным половине межатомного расстояния – периода решетки электропроводящего материала:
(
– масса атома;
– его плотность).
Круговая частота вихря также определяется через :
.
Здесь:
– секториальная скорость для
;
– радиус проводника;
– электростатическая постоянная.
Аналогично закону Ома
запишем
.
Из
видно, что
есть население одной орбиты частицами
– электрино, следующими по ней след в
след;
.
Проиллюстрируем расчет параметров для
алюминиевого проводника (радиус
)
с постоянным током
при напряжении
.
Секториальная скорость
.
Круговая частота вихря (
)
Продольная частота электрино
.
Напряжение, развиваемое одной траекторией электрино:
.
Шаг вихревого пакета
.
Кольцевой ток одного электрино пакета
Полное число электрино в вихревом пакете
Население орбиты частицами – электрино
Число орбит вихревого пакета
.
Напряжение линии, развиваемое одним пакетом – элементом вихря:
(или
)
Ток линии
(или
).
Мощность линии
(или
)
Толщина вихря
Внешний радиус вихря
.
Продольная составляющая магнитного поля проводника
.
Индукция линии
,
где
– магнитная постоянная;
–
относительная магнитная проницаемость
.
Нормальная составляющая вихревого магнитного поля проводника:
.
Как видно, электрический ток и магнитное поле являются свойствами вихревого электрического поля.
Началом деструкции линии электропередачи служит появление коронного свечения. При приближении механического напряжения вихря к значению модуля Юнга проводника амплитуда колебания внешних атомов возрастает до критического значения, при достижении которого начинается высвобождение из них избыточных электронов, которые тут же обращаются в электроны-генераторы и приступают к ФПВР, сопровождаемому излучением света в видимой области спектра. В основе коронного свечения проводника и свечения нити лампы накаливания лежит одно и то же явление – ФПВР, запускаемый столкновительным взаимодействием вихря с атомами нити и проводника.
Удельное сопротивление проводника
определяется его параметрами: периодом
решетки и диаметром глобулы
:
.
-
ширина межатомного канала.
Это подтверждается расчетом по фотографии
золота, совпадающим с фактически
значением. Часть электрино рассеивается
при столкновениях с атомами проводника,
что определяет КПД линии электропередачи.
КПД пропорционален температуре:
.
Это уже достигается при сверхпроводимости, но полной сверхпроводимости не может быть из-за рассеяния электрино. Сверхпроводимость объясняется скачкообразным уменьшением нулевого колебания атомов (в 85 раз для ) и перестройкой кристаллической решетки (в 4 раза увеличивается межатомный канал), поэтому удельное сопротивление уменьшается на 5 порядков. Незатухающий ток сверхпроводимости объясняется магнитным полем Земли. Поскольку сопротивление все же больше нуля, то без магнитного поля Земли ток затухает.
Несколько экзотической
иллюстрацией электрического тока
является излучение лазера, хотя его
излучение считают оптическим. Например,
в неодимовом лазере с энергией импульса
и продолжительностью
,
протяженность импульса
;
число вихревых
пакетов на импульсе
;
число орбит
вихревого пакета
;
структурное
сопротивление луча
;
население
одной орбиты
(~на 3 порядка больше, чем в
).
Эти расчеты выполнены по новой теории
без противоречий с фактами. Что же
происходит в лазере?
Лучи света в активном элементе многократно отражаются, что приводит к полной деструкции луча белого света. Образуется большое количество электрино, вошедших с лучом фотонами. Одновременно часть осевых полей элементарных лучей после тоже многократного отражения формирует объединенное осевое поле резонатора и через выходное зеркало уходит в пространство с бесконечной скоростью. Свободные электрино устремляются к осевому отрицательному полю. В начале вокруг осевого поля они движутся беспорядочно; затем приобретают вращение в одну сторону, и формируется нормальный вихрь. Факт сложения модулей одноименных электрических полей подтверждается суммарным зарядом осевого поля лазера данной установки. Как уже видно – лазерное излучение – это электрический ток по идеальному сверхпроводнику – электронному лучу. Но есть еще несколько примеров, отличающих лазерный луч от светового. Так, скорость распространения лазерного луча по световоду является обратной функцией частоты, то есть высокочастотный луч по световоду распространяется с меньшей скоростью, чем низкочастотный; для естественного света картина обратная.
Лазерный луч, как
и проволочный ток, легко модулируется;
световой – нет. Лазерный луч распространяется
со скоростью электрического тока
;
световой со своей скоростью (фиолетовый)
.
КПД традиционных лазеров никогда не
будет высоким в виду многоэтапности
процесса и потерь: сначала нужно добыть
свет, затем его разрушить, потом из
обломков собрать осевое электронное
поле и нанизать на него остатки фотонов.
Предлагается электрический ток с
металлического проводника переводить
сразу на сверхпроводящий проводник –
осевое электронное поле, создаваемое
каким-либо прибором, например, магнетроном.
Тогда КПД лазера будет не меньше 90%.
Поскольку вихрь электрино легко проходит
туда и обратно (металлический проводник
осевое
электронное поле), то можно осуществить,
например, беспроволочную линию
электропередачи и другие использующие
это свойство установки, в том числе,
электрогенераторы с ФПВР, которые
возбуждаются электрическим разрядом,
химической реакцией, горением, электронным
пучком и т.п.