Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
постоянный ток.docx
Скачиваний:
10
Добавлен:
21.04.2019
Размер:
155.44 Кб
Скачать

3) Вывод закона Джоуля Ленца в дифференциальной форме в классической теории электропроводности

К концу свободного пробега электрон приобретает скорость   , и, следовательно, дополнительную кинетическую энергию, средняя величина которой

Столкнувшись с ионом, электрон по предположению полностью теряет приобретенную им за время пробега скорость, и передает энергию кристаллической решетке. Эта энергия идет на увеличение внутренней энергии металла, проявляющееся в его нагревании. Каждый электрон претерпевает за секунду в среднем 1/t соударений, сообщая всякий раз решетке энергию   . Следовательно, в единице объема за единицу времени должно выделяться тепло

где n - число электронов проводимости в единице объема. Величина   есть не что иное, как удельная мощность тока. Множитель при   совпадает со значением   (18.3) для закона Ома. Таким образом. Мы пришли к выражению закона Джоуля-Ленца в дифференциальной форме.

4) Связь между теплопроводностью и электропроводностью (закон Видемана-Франца)

Из опыта известно, что наряду с высокой электропроводностью металлы отличаются также большой теплопроводностью. Видеман и Франц установили в 1853 г. эмпирический закон, согласно которому отношение коэффициента теплопроводности к коэффициенту электропроводности для всех металлов приблизительно одинаково и изменяется пропорционально абсолютной температуре. Способностью проводить тепло обладают и неметаллические кристаллы. Однако теплопроводность металлов значительно превосходит теплопроводность диэлектриков. Из этого можно заключить, что теплопередача в металлах осуществляется в основном не кристаллической решеткой, а электронами. Рассматривая электроны как одноатомный газ, для коэффициента теплопроводности можно заимствовать выражение кинетической теории газа

где   - плотность газа;   .

Тогда

(18.4)

Удельная теплоемкость одноатомного газа равна

Подставляя эти значения в выражение (18.4), получим

(18.5)

Разделив (18.5) на (18.3), имеем

Произведя замену   приходим к соотношению

(18.6)

которое выражает закон Видемана-Франца, При T=300°К для отношения получается значение   , очень хорошо согласующееся с экспериментальными данными.

5) Недостатки классической электронной теории проводимости металлов

Как было показано выше, отношение   Произведенные Лоренцем, уточненные расчеты с учетом классического распределения по скоростям привели к замене в теоретической формуле множителя 3 на 2 и к резкому увеличению расхождения теории с опытом. Второе затруднение классической электронной теории возникло при сопоставлении с опытом формул для теплоемкостей. Согласно электронной теории теплоемкость единицы объема электронного газа равна   , где n - концентрация свободных электронов. Теплоемкость, отнесенная к одному электрону,   . Рассмотрим один кг - атом одновалентного металла. Он состоит из   ионов, колеблющихся около своих положений равновесия, и   свободных электронов. Колебательная теплоемкость твердого тела по закону Дюлонга и Пти равна   , теплоемкость электронного газа

Следовательно, по электронной теории теплоемкость одновалентных металлов должна составлять   . Однако опыт показывает, что теплоемкость металлов так же, как теплоемкость твердых диэлектриков, в соответствии с законом Дюлонга и Пти близка к 3R. Таким образом, обнаружилось неожиданное и непонятное явление практического отсутствия теплоемкости у электронного газа.

Третьим затруднением классической электронной теории металлов явилась невозможность правильно объяснить с ее помощью температурную зависимость сопротивления. Опыт показывает, что сопротивление металлических проводников линейно возрастает с температурой по закону

т.е. проводимость обратно пропорциональна абсолютной температуре в первой степени: 

Согласно классической теории, проводимость обратно пропорциональна   . Наконец, возникли трудности при оценке средней длины свободного пробега электронов в металле. Для того чтобы, пользуясь формулой (18.3), получить такие значения удельной электрической проводимости металла, которые не расходились бы с опытными, приходится принимать среднюю длину свободного пробега электронов в сотни раз большей, чем период решетки металла. Иными словами, приходится предположить, что электрон проходит без соударений с ионами решетки сотни межузельных расстояний. Такое предположение непонятно в рамках классической электронной теории Друде -Лоренца.

Приведенные выше противоречия указывают на то, что классическая электронная теория, представляя электрон как материальную точку, подчиняющуюся законам классической механики, не учитывала некоторых специфических свойств самого электрона, которые еще не были известны к началу XX века. Эти свойства были установлены позднее при изучении строения атома, и в 1924 г. была создана новая, так называемая квантовая или волновая механика движения электронов.