
- •Глоссарий
- •Тема 1. Информация в контексте современной экономики
- •1. Информационное пространство как среда анализа.
- •2. Понятие информационного пространства.
- •3. Структура информационного пространства.
- •4. Элементы структуры информационного пространства. Понятие показателя.
- •Объем продаж (автомобиль, значение объема продаж)
- •И (модель автомобиля, время)
- •И (модель автомобиля (менеджер, регион, год, покупатель))
- •S (модель автомобиля, фирма изготовитель, год выпуска)
- •5. Пространственная интерпретация понятия показатель.
- •6. Единое информационное пространство предприятия.
- •Тема 2. Анализ информации на предприятии
- •1. Виды и задачи анализа на предприятии.
- •2. Содержание экономических показателей.
- •3. Классификация методов анализа.
- •4. Источники данных для проведения анализа.
- •Тема 3. Информационно – аналитическая система как инструмент проведения экономического анализа
- •1. Общее понятие информационно – аналитической системы.
- •2. Функции и сферы применения иас.
- •3. Классификация аналитических систем.
- •Полный классификатор аналитических систем
- •Инструменты добычи данных.
- •Средства построения Хранилищ и Витрин данных.
- •Управленческие информационные системы и приложения.
- •4. Концепции построения иас.
- •5. Общая структура информационной аналитической системы.
- •Тема 4. Хранилища данных
- •1. Пространственная интерпретация данных.
- •Реляционная модель представления данных
- •Многомерная модель представления данных
- •1) Формирование "Среза".
- •2) Операция "Вращение".
- •3) Отношения и Иерархические Отношения.
- •5) Операция Детализации.
- •2. Понятие хранилища данных.
- •Основные требования к данным в Хранилище Данных
- •Централизованное хранилище данных
- •Распределенное хранилище данных
- •Автономные витрины данных
- •Единое интегрированное хранилище и много витрин данных
- •3. Структура хранилищ данных.
- •4. Вопросы реализации Хранилищ Данных.
- •Неоднородность программной среды.
- •Распределенность.
- •Метаданные.
- •Роль метаданных в системах Хранилищ Данных.
- •Уровни метаданных в Хранилище Данных
- •Вопросы защиты данных
- •Задачи Хранилища данных
- •1. Консолидация данных.
- •2. Интеграция данных.
- •Консолидация данных
- •Интеграция данных
- •Агрегация данных
- •Расчеты производных показателей
- •Предоставление данных для поддержки принятия решений (dss)
- •Тема 5. Оперативный анализ данных
- •1. Место olap в информационной структуре предприятия.
- •2. Оперативная аналитическая обработка данных.
- •3. Требования к средствам оперативной аналитической обработки.
- •Правила оценки программных продуктов класса olap
- •4. Классификация olap-продуктов.
- •Классификация по способу хранения данных
- •5. Принципы работы olap-клиентов.
- •6. Выбор архитектуры olap-приложения.
- •5. Склад.
- •6. Движение денежных средств.
- •7. Бюджет.
- •8. Бухгалтерские счета.
- •9. Финансовая отчетность.
- •1. Интеллектуальный анализ данных.
- •2. Стадии иад.
- •1. Свободный поиск (Discovery).
- •2. Прогностическое моделирование (Predictive Modeling).
- •3. Анализ исключений (Forensic Analysis).
- •4. Методы иад.
- •1. Непосредственное использование обучающих данных.
- •2. Выявление и использование формализованных закономерностей.
- •3. Методы вывода уравнений.
- •4. Типы закономерностей.
- •5. Типовые задачи для методов иад.
- •6. Области применения Data mining.
- •Розничная торговля.
- •Банковское дело.
- •Телекоммуникации.
- •Страхование.
- •Другие приложения в бизнесе.
- •7. Классы систем Data Mining.
- •8. Интеграция olap и иад.
- •Тема 7. Инструментальные средства автоматизации аналитической работы и планирования
- •1. Инструментальные средства поддержки аналитической работы и их классификация.
- •2 Аналитические инструментальные средства пакетов прикладных программ широкого применения.
- •Crystal Enterprise (по материалам www.Interface.Ru).
- •3 Специализированные информационно-аналитические системы:
- •Категории продуктов.
- •Тема 8. Программные инструментальные средства информационно – аналитических систем
- •1. Назначение и сферы применения продуктов компании Intersoft Lab.
- •Система доставки отчетов удаленным пользователям.
- •Система подготовки отчетности в локальной сети.
- •Персональная система отчетности.
- •2. Состав и назначение систем Аналитической Платформы Контур.
- •3. Понятие микрокуба.
- •4. Назначение и принципы работы системы «Контур Стандарт».
- •5. Работа с системой «Контур Стандарт».
- •6. Пример анализа продаж по данным бд “Northwind” с помощью «Контур Стандарт».
2. Прогностическое моделирование (Predictive Modeling).
Здесь, на второй стадии ИАД, используются плоды работы первой, то есть найденные в БД закономерности применяются для предсказания неизвестных значений:
при классификации нового объекта мы можем с известной уверенностью отнести его к определенной группе результатов рассмотрения известных значений его атрибутов;
при прогнозировании динамического процесса результаты определения тренда и периодических колебаний могут быть использованы для вынесения предположений о вероятном развитии некоторого динамического процесса в будущем.
Возвращаясь к рассмотренным примерам, продолжим их на данную стадию. Зная, что некто Иванов - программист, можно быть на 61% уверенным, что его возраст <=30 годам, и на 98% - что он <=60 годам. Аналогично, можно сделать заключение о 84% вероятности того, что некоторое новое юридическое лицо будет находиться в муниципальной собственности, если его основной вид деятельности - "Общеобразовательные детские школы".
Следует отметить, что свободный поиск раскрывает общие закономерности, т. е. индуктивен, тогда как любой прогноз выполняет догадки о значениях конкретных неизвестных величин, следовательно, дедуктивен. Кроме того, результирующие конструкции могут быть как прозрачными, т. е. допускающими разумное толкование (как в примере с произведенными логическими правилами), так и нетрактуемыми - "черными ящиками" (например, про построенную и обученную нейронную сеть никто точно не знает, как именно она работает).
3. Анализ исключений (Forensic Analysis).
Предметом данного анализа являются аномалии в раскрытых закономерностях, то есть необъясненные исключения. Чтобы найти их, следует сначала определить норму (стадия свободного поиска), вслед за чем выделить ее нарушения. Так, определив, что 84% общеобразовательных школ отнесены к муниципальной форме собственности, можно задаться вопросом - что же входит в 16%, составляющих исключение из этого правила? Возможно, им найдется логическое объяснение, которое также может быть оформлено в виде закономерности. Но может также статься, что мы имеем дело с ошибками в исходных данных, и тогда анализ исключений может использоваться в качестве инструмента очистки сведений в хранилище данных.
4. Методы иад.
Все методы ИАД подразделяются на две большие группы по принципу работы с исходными обучающими данными.
В первом случае исходные данные могут храниться в явном детализированном виде и непосредственно использоваться для прогностического моделирования и/или анализа исключений; это так называемые методы рассуждений на основе анализа прецедентов. Главной проблемой этой группы методов является затрудненность их использования на больших объемах данных, хотя именно при анализе больших хранилищ данных методы ИАД приносят наибольшую пользу.
Во втором случае информация вначале извлекается из первичных данных и преобразуется в некоторые формальные конструкции (их вид зависит от конкретного метода). Согласно предыдущей классификации, этот этап выполняется на стадии свободного поиска, которая у методов первой группы в принципе отсутствует. Таким образом, для прогностического моделирования и анализа исключений используются результаты этой стадии, которые гораздо более компактны, чем сами массивы исходных данных. При этом полученные конструкции могут быть либо "прозрачными" (интерпретируемыми), либо "черными ящиками" (нетрактуемыми).
Две эти группы и примеры входящих в них методов представлены на рисунке 3.
Рисунок 3. Классификация технологических методов ИАД