
- •1.Графики и свойства основных элементарных функций.
- •2.Предел функции.
- •3. Основные теоремы о пределах.
- •4 Непрерывность функции в точке и на интервале.
- •5. Точки разрыва первого и второго рода.
- •6. Производная и дифференциал.
- •7. Основные теоремы о дифференцируемых функциях.
- •8. Функция нескольких переменных и их непрерывность.
- •9 Производные функций нескольких переменных.
- •10. Дифференциалы функции нескольких переменных.
- •12. Поиск экстремума функции нескольких переменных.
- •13 Неопределенный интеграл, основные теоремы.
- •14. Определенный интеграл, основные теоремы.
- •15.Интегрирование подстановкой (замены переменных). Интегрирование по частям.Интегрирование рациональных функций.
- •16.Прямая линия на плоскости.
- •17.Эллипс
- •18 Гипербола
- •19..Парабола
- •20.Прямая и плоскость в пространстве
- •21. Системы линейных уравнений.
- •24.Определители, свойства.
- •22..Матрицы, классификация.
- •23..Операции над матрицами
- •25. Обратная матрица: определение и алгоритм вычисления.
- •27. Системы векторов, операции над ними.????????
- •28. Ранг матрицы
- •29. Линейные операторы и матрицы
- •30. Собственные векторы линейных операторов
- •31 Определители. Крамер.
- •32. Решиение системы матричной формы
- •33. Метод Гаусса.
25. Обратная матрица: определение и алгоритм вычисления.
Матрица А-1 называется обратной по отношению к квадратной матрице А, если при умножении этой матрицы на данную как справа, так и слева получается единичная матрица: А-1∙А = А ∙А-1 = Е.
Обратная матрица может существовать только для квадратных матриц т.е. для тех матриц, у которых число строк и столбцов совпадают.
Алгоритм нахождения обратной матрицы:
Находим определитель исходной матрицы. Если │А│=0, то матрица А вырожденная и обратной матрицы А-1 не существует. Если определитель матрицы А не равен нулю, то обратная матрица существует.
Находим А', транспонированную к А.
Находим алгебраические дополнения элементов транспонированной матрицы А'ij=Aji (i=1..n; j=1..n) и составляем из них присоединенную матрицу .
26. N-мерное линейное векторное пространство
N-мерным вектором называется упорядоченная совокупность n действительных чисел, записываемых в виде Х=(х1,х2,…хn) , где хi – i-я компонента вектора Х.
Два n-мерных вектора равны тогда и только тогда, когда равны их соответствующие компоненты, т.е. Х=У, если xi=yi, i=1…n.
Суммой двух векторов одинаковой размерности n называется вектор Z=X+Y, компоненты которого равны сумме соответствующих компонент слагаемых векторов, т.е. zi=xi+yi , i=1…n.
Произведением вектора Х на действительное число λ называется вектор V=λX, компоненты которого равны произведению λ на соответствующие компоненты вектора Х, т.е. vi=λxi , i=1…n.
Линейные операции над векторами удовлетворяют следующим свойствам: Х + У = У + Х;
(Х + У) + Z = X + (Y + Z); a(bX) = (ab)X; a(X + Y) = aX + aY;(a + b)X = aX + bX;
Существует нулевой вектор О=(0,0,…0) такой, что Х + О = Х, для любого Х;
Для любого вектора Х существует противоположный вектор (-Х)такой,что Х + (-Х) = О;1∙Х =Х длялюб. Х.
Определение Множество векторов с действительными компонентами, в котором определены операции сложения векторов и умножения вектора на число, удовлетворяющие приведённым выше свойствам, называется векторным пространством.
Линейное (векторное) пространство, в котором задано скалярное произведение векторов, удовлетворяющее указанным свойствам называется Евклидовым пространством.
Длиной (нормой) вектора Х называется корень квадратный из его скалярного квадрата.
Угол φ между двумя векторами определяется по формуле:написать!!!
Два вектора называются ортогональными, если их скалярное произведение равно нулю.
Векторы n-мерного Евклидова пространства образуют ортонормированный базис, если эти векторы попарно ортогональны и норма каждого из них равна 1.
Размерность и базис векторного пространства
Вектор Am называется линейной комбинацией векторов A1,A2,..,Am-1 векторного пространства R, если он равен сумме произведений этих векторов на произвольные действительные числа:
Am = λ1A1 + λ2A2 + …+ λm-1 Am-1 Векторы A1,A2,..Am векторного пространства R, называются линейно зависимыми, если существуют такие числа λ1,λ2,…λm, не равные одновременно нулю, что λ1A1 + λ2A2 + … + λm Am =0. В противном случае векторы A1,A2,..Am называются линейно независимыми.
Векторное пространство R, называется n-мерным, если в нем существует n линейно независимых векторов, а любые n+1 векторов уже являются зависимыми.
Число n называется размерностью векторного пространство R и обозначается dim(R).
Совокупность n линейно независимых векторов n-мерного пространства R называется базисом.
Теорема. Каждый вектор Х векторного пространства R можно представить, и притом единственным способом, в виде линейной комбинации векторов базиса.