
- •Материаловедение и технология конструкционных материалов
- •Оглавление
- •Раздел I. Строение и свойства материалов
- •Раздел II. Структура, свойства и термическая обработка железоуглеродистых сплавов
- •Раздел III. Конструкционные и инструментальные материалы
- •Раздел IV. Способы литья в металлургии и в машиностроении
- •Раздел V. Обработка металлов давлением в металлургии и машиностроении
- •Раздел VI. Обработки резанием
- •Раздел VII. Теплофизические основы и технологии сварочного производства
- •Раздел VIII. Изготовление деталей из композиционных материалов, электро-физико-химические и нетрадиционные методы обработки
- •Введение
- •Раздел VIII посвящен получению заготовок методом порошковой металлургии и заготовок из полимерных материалов, а также электро-физико-химическим и нетрадиционным методам обработки.
- •Раздел I. Строение и свойства материалов
- •1. Строение, структура и свойства металлов и сплавов
- •1.1. Агрегатные состояния
- •1.2. Металлы и их кристаллическое строение
- •1.3. Реальное строение металлов и дефекты кристаллических решеток
- •1.4. Строение сплавов
- •1.5. Основные закономерности процесса кристаллизации, превращения в твердом состоянии, полиморфизм
- •1.6. Превращения в твердом состоянии. Полиморфизм
- •2. Механические, физические и технологические свойства материалов
- •2.1. Свойства материалов
- •2.2. Деформации и напряжения
- •2.3. Испытание материалов на растяжение и ударную вязкость
- •2.4. Определение твердости
- •2.5. Упругая и пластическая деформации, наклеп и рекристаллизация
- •Раздел II. Структура, свойства и термическая обработка железоуглеродистых сплавов
- •3. Диаграмма «железо – углерод (цементит)»
- •3.1. Общий обзор диаграмм состояния
- •5. Диаграмма состояния для сплавов, образующих химические соединения.
- •7. Диаграмма состояния сплавов с полиморфными превращениями компонентов и эвтектоидным превращением.
- •3.2. Компоненты, фазы и структурные составляющие железоуглеродистых сплавов
- •3.3. Изменения структуры сталей при охлаждении
- •3.4. Изменения структуры чугунов при охлаждении
- •3.5. Классификация и свойства углеродистых сталей
- •3.6. Классификация и свойства чугунов
- •4. Термическая и химико-термическая обработка углеродистых сталей
- •4.1. Влияние нагрева и скорости охлаждения углеродистой стали на ее структуру
- •4.2. Отжиг углеродистых сталей
- •4.3. Закалка углеродистых сталей
- •4.4. Отпуск закаленных углеродистых сталей
- •4.5. Химико-термическая обработка сталей
- •Раздел III. Конструкционные и инструментальные материалы
- •5. Конструкционные стаЛи и сплавы
- •5.1. Влияние легирующих элементов на структуру, механические свойства сталей и превращения при термообработке
- •5.2. Маркировка и классификация легированных сталей
- •5.3. Конструкционные стали
- •5.4. Коррозионно-стойкие стали
- •5.5. Жаропрочные стали и сплавы
- •5.6. Жаростойкие стали и сплавы
- •5.7. Инструментальные стали и сплавы для обработки материалов резанием
- •5.8. Инструментальные стали для обработки давлением
- •6. Титановые, медные и алюминиевые сплавы
- •6.1. Титан и его сплавы
- •6.2. Медь и её сплавы
- •6.3. Алюминий и его сплавы
- •7. Неметаллические материалы
- •7.1. Полимеры и пластмассы
- •7.2. Резиновые и клеящие материалы
- •7.3. Стекло, ситаллы, графит
- •7.4. Композиционные материалы
- •Раздел IV. Способы литья в металлургии и машиностроении
- •8. Производство чугуна и стали
- •8.1. Производство чугуна
- •8.2. Сущность процесса выплавки стали
- •8.3. Производство стали в мартеновских печах и конвертерах
- •8.4. Производство и повышение качества сталей и сплавов в электропечах
- •9. Способы литья
- •9.1. Изготовление песчаных литейных форм
- •9.2. Основные операции получения отливок в песчаных формах
- •9.3. Закономерности охлаждения отливок в литейных формах
- •9.4. Литье в оболочковые формы и по выплавляемым моделям
- •9.5. Литье в металлические формы, под давлением, центробежное литье
- •Раздел V. Обработка металлов давлением в металлургии и машиностроении
- •10. Горячая и холодная обработка металлов давлением. Прокатка
- •10.1. Горячая и холодная обработка металлов давлением
- •10.2. Нагрев заготовок перед обработкой давлением
- •10.3. Прокатка: схемы процесса, продукция, оборудование и инструмент
- •10.4. Деформации при прокатке
- •10.5. Мощность и усилия деформирования при прокатке
- •10.6. Теплообмен и температура при горячей прокатке
- •11. Волочение и прессование
- •11.1. Волочение: схема процесса, продукция, оборудование и инструмент
- •11.2. Деформации и напряжения при волочении
- •11.3. Работа, мощность и усилия при волочении
- •11.4. Температура при волочении
- •11.5. Прессование: схемы процесса, продукция, инструмент
- •11.6. Деформации, работа и усилия деформирования при прессовании
- •12. Способы обработки металлов давлением в машиностроении
- •12.1. Общая характеристика операций ковки и горячей объемной штамповки
- •12.2. Оборудование для ковки и штамповки
- •12.3. Деформации, работа и усилия при различных операциях ковки и штамповки
- •12.4. Нагрев и охлаждение штампов при горячей штамповке
- •12.5. Холодная листовая штамповка
- •Тесты для проверки знаний
- •Раздел VI. Обработка резанием
- •13. Характеристики способов обработки резанием, деформации и силы резания
- •13.1. Способы обработки резанием
- •13.2. Металлорежущие станки
- •13.3. Режущие инструменты, действительные углы режущего лезвия
- •13.4. Характеристики режима резания и сечения срезаемого слоя
- •14. Деформации, напряжения, силы и температуры при резании
- •14.1. Схематизация стружкообразования и характеристики деформаций при резании
- •14.2. Силы при точении
- •14.3. Схема и расчет сил при торцовом фрезеровании
- •14.4. Предел текучести и температура деформации при резании
- •14.5. Температура полуплоскости от равномерно распределенного быстродвижущегося источника тепла
- •14.6. Температура передней поверхности режущего лезвия
- •14.7. Температура задней поверхности режущего лезвия
- •15. Износостойкость инструмента и режимы резания, проектирование технологического процесса
- •15.1. Изнашивание и износостойкость режущих инструментов
- •15.2. Обрабатываемость материалов, характеристики обрабатываемости
- •15.3. Назначение режимов резания и параметров инструмента при обработке резанием
- •Тесты для проверки знаний
- •Раздел VII. Теплофизические основы и технологии сварочного производства
- •16. Характеристика способов сварки и схематизация сварочных процессов
- •16.1. Классификация и технологические характеристики различных способов сварки
- •16.2. Основные источники энергии, применяющиеся при сварке
- •16.3. Схематизация процессов распространения тепла при сварке
- •16.4. Тепловой баланс электрической дуговой сварки
- •17. Способы термической сварки
- •17.1. Ручная дуговая сварка
- •17.2. Автоматическая дуговая сварка под флюсом
- •17.3. Сварка в защитных газах
- •17.4. Плазменная сварка и резка
- •17.5. Электрошлаковая сварка
- •17.6. Газовая сварка
- •18. Термомеханические способы сварки
- •18.1. Электрическая контактная стыковая сварка
- •18.2. Электрическая контактная точечная сварка
- •18.3. Электрическая контактная шовная сварка
- •18.4. Конденсаторная сварка
- •18.5. Сварка трением
- •18.6. Ультразвуковая сварка
- •Тесты для проверки знаний
- •Раздел VIII. Изготовление деталей из композиционных материалов, электро-физико-химические и нетрадиционные методы обработки
- •19. Получение деталей методом порошковой металлургии
- •19.1. Технологический процесс получения деталей методом порошковой металлургии
- •Химико-металлургический способ
- •19.2. Получение порошка исходного материала
- •19.3. Формование заготовок
- •19.4. Спекание и доводка заготовок
- •20. Производство изделий из полимерных материалов
- •20.1. Способы формообразования деталей из полимеров в вязкотекучем состоянии
- •20.2. Обработка полимеров в высокоэластичном состоянии
- •20.3. Обработка полимерных материалов в твердом состоянии
- •20.4. Сварка полимерных материалов
- •21. Электро-физико-химические и нетрадиционные методы обработки
- •21.1. Классификация электро-физико-химических методов обработки
- •21.2. Электроэрозионная обработка
- •21.3. Электрохимическая (анодно-химическая) обработка
- •21.4. Ультразвуковая размерная обработка
- •21.5. Лучевая обработка
- •21.6. Комбинированные процессы обработки
- •21.7. Нетрадиционные методы обработки
- •21.8. Методы формирования изделий путем наращивания поверхности
- •21.9. Методы поверхностной модификации свойств изделий
- •Тесты для проверки знаний
- •Библиографический список
5.2. Маркировка и классификация легированных сталей
В основу классификации легированных сталей заложены четыре принципа: равновесная структура, структура после охлаждения на воздухе, состав и назначение сталей.
По равновесной структуре стали подразделяются на доэвтектоидные, эвтектоидные, заэвтектоидные и ледебуритные.
Эвтектоидные стали имеют перлитную структуру; доэвтектоидные и заэвтектоидные наряду с перлитом содержат феррит или вторичные карбиды типа Ме3С. В структуре литых ледебуритных (карбидных) сталей присутствует эвтектика (ледебурит), образованная первичными карбидами с аустенитом.
В соответствии с диаграммой «Fe – Fe3C» доэвтектоидные стали содержат менее 0,8 % углерода, эвтектоидные – около 0,8 %; заэвтектоидные – 0,8–2,0 % и ледебуритные – примерно до 2,14 %.
Большинство легирующих элементов сдвигает точки S и E (на диаграмме «Fe – Fe3C») в сторону меньшего содержания углерода, поэтому граница между доэвтектоидными и заэвтектоидными сталями, заэвтектоидными и ледебуритными лежит в легированных сталях при меньшем содержании углерода, чем в углеродных.
При охлаждении на спокойном воздухе образцов небольшой толщины можно выделить три основных класса сталей: перлитный, мартенситный, аустенитный.
Получение трех классов стали обусловлено тем, что по мере увеличения содержания легирующих элементов устойчивость аустенита в перлитной области возрастает, а температурная область мартенситного превращения понижается. Это отражено на диаграммах изотермического распада аустенита (рис. 5.4).
Стали перлитного класса характеризуются относительно малым содержанием легирующих элементов и для них кривая скорости охлаждения на воздухе будет пересекать область перлитного распада и будут получаться структуры – перлит, сорбит, троостит.
У сталей мартенситного класса, характеризующихся большим содержанием легирующих элементов, область перлитного распада значительно сдвинута вправо – аустенит переохлаждается без распада до температур мартенситного превращения, образуется мартенсит.
Дальнейшее увеличение содержания углерода и легирующего элемента не только сдвигает область перлитного распада, но и переводит начало мартенситного превращения в область отрицательных температур, поэтому такая сталь, охлажденная на воздухе при комнатной температуре, сохранит аустенитное состояние.
а б в
Рис. 5.4. Диаграмма изотермического распада аустенита для сталей перлитного (а), мартенситного (б) и аустенитного (в) классов
В зависимости от вводимых элементов (по химическому составу) стали разделяются на хромистые, марганцовистые, хромоникелевые, хромоникельмолибденовые и т. п.
Кроме того, стали подразделяются по общему количеству легирующих элементов в них на низколегированные (до 2,5 % легирующих элементов), легированные (от 2,5 до 10 %) и высоколегированные (более 10 %).
Разновидностью классификации по химическому составу является классификация по качеству. Качество стали – это комплекс обеспечиваемых металлургическим процессом свойств, таких как однородность химического состава, строения и свойств стали, ее технологичность. Эти свойства зависят от содержания газов (кислорода, азота, водорода) и вредных примесей (серы и фосфора).
По качеству легированные стали подразделяются на качественные (до 0,04 % S и до 0,035 % P), высококачественные (до 0,025 % S и до 0,025 % Р) и особовысококачественные (до 0,015 % S и до 0,025 % Р).
В зависимости от назначения стали можно объединить в следующие группы:
конструкционные, применяемые для изготовления различных деталей машин, механизмов и конструкций в машиностроении и строительстве и обладающие определенными механическими, физическими и химическими свойствами;
инструментальные, применяемые для обработки материалов резанием или давлением и обладающие высокой твердостью, прочностью, износостойкостью и рядом других свойств.
Конструкционные стали подразделяются:
на строительные;
машиностроительные;
стали с особыми свойствами – теплоустойчивые, жаропрочные, жаростойкие, коррозионно-стойкие.
Маркировка легированных сталей состоит из сочетания букв и цифр, обозначающих их химический состав.
Каждый легирующий элемент обозначается буквой: А – азот, Б – ниобий, В – вольфрам, Г – марганец, Д – медь, Е – селен, К –кобальт, Н – никель, М – молибден, П – фосфор, Р – бор, С – кремний, Т – титан, Ф – ванадий, Х – хром, Ц – цирконий, Ч – редкоземельные элементы, Ю – алюминий.
Первые цифры в обозначении показывают среднее содержание углерода в сотых долях процента. Цифры, идущие после буквы, указывают примерное содержание легирующего элемента в процентах (при содержании 1–1,5 % и менее цифра отсутствует). Например, сталь 12Х2НВФА в среднем содержит 0,12 % С; 2 % Cr, 1 % Ni, 1 % W, 1 % V. Буква А в конце марки означает, что сталь высококачественная (ограничено содержание вредных примесей: S < 0,03 %; P < 0,03 %). Особовысококачественные стали имеют в конце марки букву Ш, например 30ХГС–Ш.
Некоторые группы сталей содержат дополнительные обозначения: марки подшипниковых сталей начинаются с буквы Ш (ШХ15), автоматных – с буквы А (А30); буква Л (110Г13Л) в конце марки обозначает, что детали из данного сплава получают литьем.
В начале обозначения марки быстрорежущих сталей стоит буква Р, за которой следует цифра, показывающая содержание основного легирующего элемента вольфрама в процентах (Р18 – 18 % W, Р6М5 – 6 %W, 5 % Mo).