Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ФИЗИКА ЭКЗАМЕН!!!.docx
Скачиваний:
23
Добавлен:
20.04.2019
Размер:
1.11 Mб
Скачать
  1. Взаимосвязь электрического и магнитного полей. Ток смещения. Второе уравнение теории максвелла в интегральной форме.

Основная идея Максвелла – это идея о взаимопревращаемости электрических и магнитных полей. Максвелл предположил, что не только переменные магнитные поля являются источниками электрических полей, но и переменные электрические поля являются источниками магнитных полей. Согласно гипотезе Максвелла, изменяющееся во времени электрическое поле создает в окружающем пространстве вихревое магнитное поле , циркуляция которого по любому замкнутому контуру, равна скорости изменения потока электрической индукции через поверхность, ограниченную этим контуром:

.

Величина, стоящая в правой части этого выражения, получила название тока смещения:

Смысл введения этой величины можно пояснить следующим опытом (рис.15.4). Конденсатор, подключенный к источнику постоянного тока, представляет собой разрыв цепи для тока проводимости, поэтому в такой цепи ток не течет. При этом в конденсаторе имеется электрическое поле, индукция которого .

Рис.15.4. К гипотезе Максвелла о токе смещения.

Если конденсатор подключить к источнику переменного тока, то, как показывает опыт, в цепи будет течь переменный ток. Его существование можно объяснить только тем, что в пространстве между обкладками ток проводимости замыкается током смещения, поскольку теперь . В этом случае конденсатор перестает представлять собой разрыв цепи.

В соответствии с гипотезой Максвелла полный ток в проводнике складывается из тока проводимости I и тока смещения Iсм , каждый из которых является источником своего магнитного поля так, что общее магнитное поле, существующее вокруг проводника, есть:

,

где

.

Следовательно,

.

Если контур интегрирования охватывает несколько проводников с током, то в соответствии с теоремой о циркуляции магнитного поля, мы должны написать:

Написанное уравнение является вторым уравнением Максвелла в интегральной форме.

  1. Полная система уравнений Максвелла в дифференциальной форме.

1. Применяя теорему Стокса, преобразуем левую часть первого уравнения Максвелла к виду: .

Тогда само уравнение можно переписать как , откуда, в силу произвольности поверхности интегрирования, имеем:

2. Применяя теорему Остроградского ко второму уравнению Максвелла, находим:

,

откуда, в силу произвольности объема интегрирования, имеем:

3. Применяя теорему Стокса, преобразуем левую часть третьего уравнения Максвелла к виду:

.

Тогда само уравнение можно переписать как , откуда, в силу произвольности поверхности интегрирования, имеем:

4. Применяя теорему Остроградского, преобразуем левую часть четвертого уравнения Максвелла к виду:

.

Тогда само уравнение можно переписать как , откуда, в силу произвольности объема интегрирования, имеем:

  1. Природа носителей тока в металлах. Доказательство электронной проводимости металлов.

Для выяснения природы носителей тока в металлах был поставлен ряд опытов.

Опыт Рикке (Riecke C., 1845-1915). В 1901г. Рикке осуществил опыт, в котором он пропускал ток через стопку цилиндров с тщательно отполированными торцами Cu-Al-Cu (рис.6.1). Перед началом опыта образцы были взвешены с высокой степенью точности (Δm = ±0,03 мг). Ток пропускался в течение года. За это время через цилиндры прошел заряд q = 3,5∙106 Кл.

По окончании опыта цилиндры были вновь взвешены. Взвешивание показало, что пропускание тока не оказало никакого влияния на вес цилиндров. При исследовании торцевых поверхностей под микроскопом также не было обнаружено проникновения одного металла в другой. Результаты опыта Рикке свидетельствовали о том, что носителями тока в металлах являются не атомы, а какие-то частицы, которые входят в состав всех металлов.

Такими частицами могли быть электроны, открытые в 1897г. Томсоном (Thomson J., 1856-1940) в опытах с катодными лучами. Чтобы отождествить носители тока в металлах с электронами, необходимо было определить знак и величину удельного заряда носителей. Это было осуществлено в опыте Толмена и Стюарта (Tolman R., 1881-1948, Stewart B., 1828-1887).

Опыт Толмена и Стюарта. Суть опыта, проведенного в 1916г., состояла в определении удельного заряда носителей тока при резком торможении проводника (рис.6.2). В опыте для этой цели использовалась катушка из медного провода длиной 500м, которая приводилась в быстрое вращение (линейная скорость витков составляла 300м/с), а затем резко останавливалась. Заряд, протекавший по цепи за время торможения, измерялся с помощью баллистического гальванометра.

Найденный из опыта удельный заряд носителя тока , оказался очень близким к величине удельного заряда электрона , откуда был сделан вывод о том, что ток в металлах переносится электронами.