
- •1. Обработка информации и проблема интерпретации. Роль математического моделирования
- •Основные этапы математического моделирования
- •2. Основные понятия теории систем. Система и системное свойство
- •Понятия, характеризующие функционирование и развитие систем
- •Элемент
- •Подсистема
- •Структура
- •Состояние
- •Поведение
- •Модель функционирования (поведения) системы
- •3. Классификация систем
- •4. Взаимодействие системы с окружающей средой. Метаболизм
- •5. Определение понятия модели. Методы моделирования и классификация моделей
- •6. Математическая и компьютерная модель. Уровень идеализации и принцип минимальности
- •7. Цели моделирования и требования, предъявляемые к модели. Этапы компьютерного моделирования
- •8. Классификация математических и компьютерных моделей
- •Классификация км
- •9. Линейные модели и линейные системы уравнений. Проблемы вырождения и обусловленности
- •10. Интерполяция данных. Формулировка задачи интерполяции. Линейная интерполяция
- •Геометрическая интерпретация
- •11. Интерполяция полиномом и сплайны
- •Интерполяция многочленами
- •Метод решения задачи Полином Лагранжа
- •Полином Ньютона
- •Погрешность интерполирования
- •Выбор узлов интерполяции
- •12. Многомерная интерполяция данных
- •13. Идентификация моделей и задачи аппроксимации. Линейная аппроксимация и линеаризация
- •14. Нелинейная аппроксимация. Аппроксимация функцией произвольного вида. Аппроксимация полиномом
- •15. Нелинейная аппроксимация. Метод вложенных алгоритмов
- •16. Численное дифференцирование. Устойчивость и выбор шага дифференцирования
- •17. Вычисление определенных интегралов. Сравнительная характеристика методов Методы численного интегрирования
- •Интегрирование методом Монте-Карло
- •Обычный алгоритм Монте-Карло интегрирования
- •18. Метод Монте-Карло. Вычисление кратных интегралов
- •19. Моделирование стационарного состояния нелинейных систем
- •20. Моделирование динамики систем. Уравнения переходных процессов
- •Скалярное уравнение динамики системы
- •Векторное уравнение динамики системы
- •21. Моделирования динамики систем и численные методы решения задачи Коши
- •22. Жесткие системы. Неявные методы. Эквидистантный метод
- •23. Использование метода Монте-Карло при построении модели оптической пары "излучатель-приемник".
- •24. Стохастические модели. Получение случайных чисел с заданным распределением.
- •1.4. Моделирование случайных величин с заданным законом распределения
- •1. Метод нелинейного преобразования, обратного функции распределения
- •2. Метод Неймана
- •3. Метод кусочной аппроксимации
- •4. Некоторые специальные методы моделирования случайных величин
- •25. Модель источника случайных воздействий
- •26. Моделирование процессов кристаллизации. Расчет плоского кластера
- •27. Моделирование инерционных систем
- •28. Распределенные системы. Модель зонной печи
10. Интерполяция данных. Формулировка задачи интерполяции. Линейная интерполяция
Многомерные методы интерполяции существуют, но очень сложные и практически не используются. Требования: функция в макс степени должна быть гладкая и непрерывн на промежутке; устойчивость(отсутвие осциляций); гладкость(непрерывн производн)
Интерполя́ция, интерполи́рование — в вычислительной математике способ нахождения промежуточных значений величины по имеющемуся дискретному набору известных значений.
Многим из тех, кто сталкивается с научными и инженерными расчётами часто приходится оперировать наборами значений, полученных экспериментальным путём или методом случайной выборки. Как правило, на основании этих наборов требуется построить функцию, на которую могли бы с высокой точностью попадать другие получаемые значения. Такая задача называется аппроксимацией. Интерполяцией называют такую разновидность аппроксимации, при которой кривая построенной функции проходит точно через имеющиеся точки данных.
Существует также близкая к интерполяции задача, которая заключается в аппроксимации какой-либо сложной функции другой, более простой функцией. Если некоторая функция слишком сложна для производительных вычислений, можно попытаться вычислить её значение в нескольких точках, а по ним построить, то есть интерполировать, более простую функцию. Разумеется, использование упрощенной функции не позволяет получить такие же точные результаты, какие давала бы первоначальная функция. Но в некоторых классах задач достигнутый выигрыш в простоте и скорости вычислений может перевесить получаемую погрешность в результатах.
Пусть функция
задана таблицей своих значений:
-
X:
x0
x1
x2
…
xn
Y:
y0
y1
y2
…
yn
Попытаемся построить такую другую функцию (х;c), которая полностью совпадала бы с заданной f(x) в этих узлах, т.е.
(х; c) = (х, c1, c2, ..., cт) f(xк).
Тогда из последнего равенства можно будет определить компоненты c. При k т, а в частном случае k = т, компоненты c определяются из решения системы
(1.1)
которая в указанных случаях имеет единственное решение, если ее главный определитель отличен от нуля:
Одним из самых важных классов среди интерполирующих функций является множество алгебраических полиномов вида
где
ci
- некоторые неизвестные коэффициенты.
Для того чтобы их определить однозначно,
необходимо иметь n+1
точек для построения системы из
n линейных
уравнений относительно
ci.
Если среди узлов {xi,yi}
нет совпадающих, то такой полином будет
единственным. Итак, ищем полином:
.
Запишем систему уравнений для определения коэффициентов полинома из условия совпадения значений в заданных точках:
(1.2)
Справедлива теорема о существовании и единственности интерполяционного многочлена, так как определитель этой системы уравнений – определитель Вандермонда – отличен от нуля.
Лине́йная интерполя́ция ФОРМУЛА — интерполяция алгебраическим двучленом P1(x) = ax + b функции f, заданной в двух точках x0 и x1 отрезка [a, b]. В случае, если заданы значения в нескольких точках, функция заменяется кусочно-линейной функцией.