Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ответы на вопросы по физике все кроме электриче....doc
Скачиваний:
11
Добавлен:
19.04.2019
Размер:
1.69 Mб
Скачать

Силовые поля

Этим полям соответствуют кулоновские силы (силы электростатического взаимодействия) и силы гравитационные (силы Всемирного тяготения. Сходство между ними заключается в том, что они могут быть обнаружены во время взаимодействия материальных объектов, причем в случае гравитации свойством, обуславливающим это взаимодействие, является масса, а в случае кулоновского взаимодействия — заряд, этой массой переносимый. Заряды, не связанные с массой, классической физике неизвестны.

При сохранении подобия в геометрических размерах тел и их взаимного расстояния, силы взаимного тяготения, равно как и силы электростатические (кулоновские) растут пропорционально 4-й степени абсолютных размеров рассматриваемой модели. В то же самое время в случае электрического взаимодействия, где между величиной заряда и размерами тел, несущих эти заряды, нет определённой связи, силы взаимодействия ослабляются пропорционально 2-й степени абсолютных размеров . Поэтому при сравнении этих сил в микромире доминируют Кулоновские силы, а в масштабах Вселенной — силы Всемирного тяготения.

12. Работа на участке + следствия(значение угла)

работой, совершаемой силой при прохождении телом пути , называют величину

(4.1)

где а - угол между силой и направлением движения тела.

Работа - скалярная величина. Если вектор силы и вектор перемещений образуют острый угол т.е. , то , если , то , т.е. сила, действующая перпендикулярно к перемещению тела, работы не совершает.

В общем случае тело может двигаться произвольным, достаточно сложным образом (рис.4.2). Выделим элементарный участок пути , на котором силу можно считать постоянной и перемещение прямолинейным. Элементарная работа на этом участке равна

(4.2)

Полная работа на пути определяется интегралом

13.Определение мощности + формула(обычная + мгновенная)

Мо́щностьфизическая величина, равная отношению работы, выполняемой за некоторый промежуток времени, к этому промежутку времени.

— средняя мощность

— мгновенная мощность

Так как работа является мерой изменения энергии, мощность можно определить также как скорость изменения энергии системы.Единица мощности[N] = 1 Вт = 1 Дж/с.

  • Кинетическая и потенциальная энергия.

14. Определение кинетической энергии + формула + следствия.Рассмотрим случай, когда материальная точка движется из точки 1 в точку 2 под действием приложенных к ней сил (рис.4.4.)

Причем силы, действующие на материальную точку, могут иметь разную природу, т.е. могут быть консервативными и неконсервативными. Уравнение движения в этом случае запишется в виде

(4.6)

где Перепишем (4.6) в виде

(4.7)

Умножим скалярно уравнение (4.7) на и проинтегрируем от точки1 до точки 2, получим:

(4.8)

Учитываем то, что , и интеграл в правой части выражения (4.8) представляет собой работу всех сил, на участке 1-2, можно записать:

(4.9)

величина

(4.10)

называется кинетической энергией материальной точки. Таким образом, кинетическая энергия материальной точки – это энергия, которой обладает эта точка вследствие своего движения.

Из полученного выражения (4.9) следует, что работа всех сил, действующих на материальную точку на участке траектории 1-2 равна изменению ее кинетической энергии на этом участке.

15. Определение потенциальной энергии + формула + условие

Потенциальная энергия - это энергия, обусловленная взаимным расположением тел и характером их взаимодействия. При соответствующих условиях возможно изменение потенциальной энергии, за счет чего совершается работа. Для поднятия тела массой m на высоту необходимо совершить работу против сил тяготения Р:

,

знак минус перед интегралом, т.к. сила Р направлена в сторону противоположную изменению h.

Проинтегрируем это выражение:

Эта энергия пойдет на увеличение энергии замкнутой системы тело-Земля т.е. численно равна

Считая поверхности Земли , получим

Эта энергия системы тело - Земля и является потенциальной энергиейтела, поднятого на высоту h: