Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ответы на вопросы по физике 1-54.doc
Скачиваний:
6
Добавлен:
18.04.2019
Размер:
1.21 Mб
Скачать

Физические основы Механики:

  • Разделы механики и их описание.

  • Кинематика

1.Что такое материальная точка?(материальное тело, абсолютно твёрдое тело)

Предмет механики. Механикой называют раздел физики, посвященный изучению закономерностей простейшей формы движения материи - механического движения.

Механика состоит из трех подразделов: кинематики, динамики и статики.

Кинематика изучает движение тел без учета причин, его вызывающих. Она оперирует такими величинами как перемещение, пройденный путь, время, скорость движения и ускорение.

Динамика исследует законы и причины, вызывающие движение тел, т.е. изучает движение материальных тел под действием приложенных к ним сил. К кинематическим величинам добавляются величины - сила и масса.

В статике исследуют условия равновесия системы тел. Статика излагается в специальных разделах механики и здесь отдельно рассматриваться не будет.

Механическим движением называется изменение взаимного расположения тел относительно друг друга в пространстве с течением времени. Любое механическое движение относительно.

Материальной точкой называется такое тело, размерами и формой которого можно пренебречь в сравнении с размерами других тел или расстояниями до них в условиях данной задачи.

Материа́льная то́чка — простейшая физическая модель в механике — математическая абстракция — тело, размеры которого допустимо считать бесконечно малыми по отношению к остальным объектам исследуемой задачи.

Практически под материальной точкой понимают обладающее массой тело, размерами и формой которого можно пренебречь при решении данной задачи.[1] Например, при расчёте пути, пройденного поездом, можно пренебречь его размерами, даже если путь измеряется сантиметрами.

При прямолинейном движении тела достаточно одной координатной оси для определения его положения.

2.Что такое вращение?Враще́ние — круговое движение объекта. В плоском пространстве объект вращается вокруг центра (или точки) вращения. В трёхмерном пространстве объект вращается вокруг линии, называемой осью. Если ось вращения расположена внутри тела, то говорят, что тело вращается само по себе или обладает спином, который имеет относительную скорость и может иметь момент импульса. Круговое движение относительно внешней точки, например, вращение Земли вокруг Солнца, называется орбитальным движением или, более точно, орбитальным вращением.

3. Что такое система отсчёта?(её составляющие)

Система отсчета. Под системой отсчета понимается совокупность системы координат и часов. Понятие системы отсчета, включает в себя пространственно-временную характеристику положения тела, при этом пространственная характеристика дается с помощью координат, а временная – с помощью часов. Система отсчёта — это совокупность точки отсчёта, системы координат и системы отсчёта времени, связанных с этой точкой, по отношению к которой изучается движение (или равновесие) каких-либо других материальных точек или тел.

Математически движение тела (или материальной точки) по отношению к выбранной системе отсчёта описывается уравнениями, которые устанавливают, как изменяются с течением времени t координаты, определяющие положение тела (точки) в этой системе отсчёта. Эти уравнения называются уравнениями движения. Например, в декартовых координатах х, y, z движение точки определяется уравнениями x = f1(t), y = f2(t), z = f3(t).

В современной физике любое движение является относительным, и движение тела следует рассматривать лишь по отношению к какому-либо другому телу (телу отсчёта) или системе тел. Нельзя указать, например, как движется Луна вообще, можно лишь определить её движение, например, по отношению к Земле, Солнцу, звёздам и т. п.

4. Формула мгновенной скорости.

Мгновенная скорость есть первая производная пути по времени = v=(ds/dt)=s' где символы d/dt или штрих справа вверху у функции обозначают производную этой функции. Иначе - это скорость v =s/t при t, стремящимся к нулю... :) При отсутствии ускорения в момент измерения - мгновенная равна средней за время периода движения без ускорений Vмгн. = Vср. =S/t за этот период.Мгновенная скорость или скорость в данный момент времени. Если в выражении (1.5) перейти к пределу, устремляя к нулю, то мы получим выражение для вектора скорости м.т. в момент времени t прохождения ее через т.М траектории.

5. Что такое ускорение?(определение + формула)

Ускорение характеризует быстроту изменения скорости, т.е. изменение величины скорости за единицу времени.Вектор среднего ускорения. Отношение приращения скорости к промежутку времени , в течение которого произошло это приращение, выражает среднее ускорение:

Ускоре́ние (обычно обозначается , в теоретической механике ) — производная скорости по времени, векторная величина, показывающая, насколько изменяется вектор скорости точки (тела) при её движении за единицу времени (т.е. ускорение учитывает не только изменение величины скорости, но и её направления).

Например, вблизи Земли падающее на Землю тело, в случае, когда можно пренебречь сопротивлением воздуха, увеличивает свою скорость примерно на 9,8 м/с каждую секунду, то есть, его ускорение равно 9,8 м/с².

Единицей ускорения служит метр в секунду за секунду (m/s2, м/с2), существует также внесистемная единица Гал (Gal), применяемая в гравиметрии и равная 1 см/с2.

6. Формула ускорения при криволинейном движении(по окружности)

При криволинейном движении даже с постоянной по модулю скоростью полное ускорение отлично от нуля. Это связано с тем, что при криволинейном движении тангенциальная составляющая скорости может не изменяться, но нормальная претерпевает изменения, т. е. всякое криволинейное движение — это движение ускоренное. Полное ускорение представляет собой сумму нормального и тангенциального ускорений.

Разложение ускорения по сопутствующему базису для движения в плоскости

Вектор ускорения можно разложить по сопутствующему базису :

,

где

  • — величина скорости,

  • — единичный касательный к траектории вектор, направленный вдоль скорости (касательный орт),

  • — орт главной нормали к траектории, который можно определить как единичный вектор в направлении ,

  • — орт бинормали к траектории,

  • R — радиус кривизны траектории.

, называемое бинормальным ускорением, всегда равно нулю. Это можно считать прямым следствием определения векторов : можно сказать, что они выбираются именно так, чтобы первый всегда совпадал с нормальным ускорением, второй же ортогонально первому.

Векторы и называются касательным (тангенциальным) и нормальным ускорениями соответственно.

Итак, учитывая сказанное выше, вектор ускорения всегда можно записать как:

Динамика

7. Силы инерции

Силы инерции — силы, обусловленные ускоренным движением неинерциальной системы отсчета (НСО) относительно инерциальной системы отсчета (ИСО). Основной закон динамики для неинерциальных систем отсчета: , где — сила, действующая на тело со стороны других тел;

— сила инерции, действующая на тело относительно поступательно движущейся НСО. — ускорение НСО относительно ИСО. Она появляется, например, в самолете при разгоне на взлетной полосе;

— центробежная сила инерции, действующая на тело относительно вращающейся НСО. — угловая скорость НСО относительно ИСО, — расстояние от тела до центра вращения;

— кориолисова сила инерции, действующая на тело, движущееся со скоростью относительно вращающейся НСО. — угловая скорость НСО относительно ИСО (вектор направлен вдоль оси вращения в соответствии с правилом правого винта).

Первый закон Ньютона постулирует наличие такого явления, как инерция тел. Поэтому он также известен как Закон инерции. Инерция — это явление сохранения телом скорости движения (и по величине, и по направлению), когда на тело не действуют никакие силы. Чтобы изменить скорость движения, на тело необходимо подействовать с некоторой силой. Естественно, результат действия одинаковых по величине сил на различные тела будет различным. Таким образом, говорят, что тела обладают инертностью. Инертность — это свойство тел сопротивляться изменению их текущего состояния. Величина инертности характеризуется массой тела.