
- •4. Формула мгновенной скорости.
- •6. Формула ускорения при криволинейном движении(по окружности)
- •7. Силы инерции
- •8. Силы инерции при криволинейном движении(по окруж)
- •Силовые поля
- •16. Определение консервативных сил
- •17. Доказать что работа консервативных сил на замкнутом пути равна 0
- •18. Физические поля(определение однородного поля)
- •19. Центральное поле силы(?!?)
- •22. Связь между потенциальной энергией и силой(формула с градиентом).
- •23. Полная механическая энергия
- •Полная механическая энергия: - характеризует движение и взаимодействие тел; и - является функцией скоростей и взаимного расположения тел.
- •24. Закон сохранения механической энергии для м.Т закон сохранения механической энергии
- •28. Момент инерции для тонкого однородного стержня(формула)
- •30. Кинетическая энергия вращения
- •31. Момент импульса.
- •32. Закон сохранения момента импульса. Закон сохранения момента импульса
- •33. Принцип относительности Галилея
- •34. Преобразование скоростей и ускорений .
- •35. Принцип относительности Эйнштейна
- •36.Принцип постоянства скорости света.
- •38.Следствия из преобразований Лоренца(время, длина)
- •39. Релятивистский закон сложения скоростей
- •42.Связь энергии с импульсом
- •43. Определение колебаний, их виды и характеристики
- •44. Математический,пружинный и физический маятники
- •45. Энергия гармонических колебаний
- •47. Вынужденные колебания
- •49. Упругие волны
- •51. Уравнение бегущей волны
- •52 Основные положения мкт: 3 основных положения молекулярно - кинетической теории:
- •1. Виды степеней свободы и число степеней свободы в идеальном газе
- •Формула
- •7.Явления переноса (диффузия, теплопроводность, вязкость)
- •8.Определение термодинамики и её параметров
- •9. Работа газов и изменение объемов
- •15. Работа при адиабатном процессе
- •16.Политропные процессы
- •18. Тепловая и холодильная машина
- •20. Цикл Карно и кпд идеального газа
- •21. Энтропия и её свойства
- •22 . Энтропия идеального газа
- •23 Статистический смысл 2-го начала термодинамики
- •24 Реальные газы
- •27. Экспериментальные изотермы реального газа
15. Работа при адиабатном процессе
Адиабатический
процесс - это такое изменение состояний
газа, при котором он не отдает и не
поглощает извне теплоты. Следовательно,
адиабатический процесс характеризуется
отсутствием теплообмена газа с окружающей
средой. Адиабатическими можно считать
быстро протекающие процессы. Так как
передачи теплоты при адиабатическом
процессе не происходит, то
и
уравнение I начала термодинамики
принимает вид
|
(9.20) |
или
т.е.
внешняя работа газа может производиться
вследствие изменения его внутренней
энергии. Адиабатное расширение газа
(dV>0) сопровождается положительной
внешней работой, но при этом внутренняя
энергия уменьшается и газ охлаждается
(dT<0).
16.Политропные процессы
Политропный процесс — термодинамический процесс, во время которого удельная теплоёмкость c газа остаётся неизменной. Предельными частными явлениями политропного процесса являются изотермический процесс и адиабатный процесс. В случае идеального газа изобарный процесс и изохорный процесс также являются политропическими.
Для идеального газа уравнение политропы может быть записано в виде:
pVn = const
где
величина
называется
показателем политропы.
В зависимости от процесса можно определить значение n:
1. Изотермический процесс: n = 1, так как PV1 = const, значит PV = const, значит T = const.
2. Изобарный процесс: n = 0, так как PV0 = P = const.
3. Адиабатный процесс: n = γ, это следует из уравнения Пуассона.
Здесь γ — показатель адиабаты.
4.
Изохорный процесс:
,
так как
,
значит P1
/ P2
= (V2
/ V1)n,
значит V2
/ V1
= (P1
/ P2)(1
/ n),
значит, чтобы V2
/ V1
обратились в 1, n должна быть бесконечность.
17. 2-е начало термодинамики
Выражая всеобщий закон сохранения и превращения энергии, первое начало термодинамики не позволяет определить направление протекания процесса. В самом деле, процесс самопроизвольной передачи энергии в форме теплоты от холодного тела к горячему ни в какой мере не противоречит первому закону термодинамики. Однако при опускании раскаленного куска железа в холодную воду никогда не наблюдается явление дальнейшего нагревания железа за счет соответствующего охлаждения воды. Далее, первое начало не исключает возможности такого процесса, единственным результатом которого было бы превращение теплоты, полученной от нагревателя в эквивалентную ей работу. Так, например основываясь на первом начале можно было бы попытаться построить периодически действующий двигатель, совершающий работу за счет одного источника тепла (например за счет внутренней энергии океана). Такой двигатель называется вечным двигателем второго рода. Обобщение огромного экспериментального материала привело к выводу о невозможности построения вечного двигателя второго рода. Этот вывод получил название второго начала термодинамики.
Существует ряд различных по форме, одинаковых по существу формулировок второго начала:
Невозможен процесс, единственным результатом которого является превращение всей теплоты, полученной от нагревателя, в эквивалентную ей работу.
Формулировка Клаузиуса: теплота сама собой не может переходить от менее нагретого тела к более нагретому.
Формулировка Томсона-Планка: перпетуум мобиле второго рода невозможен.