
- •1.Предмет теоретической механики. Разделы механики.
- •2. Статика твердого тела. Основные понятия статики. Сила.
- •3. Аксиомы статики.
- •4. Теорема о трех силах.
- •5. Связи. Реакции связей. Принцип освобождения от связей.
- •6.Система сходящихся сил. Условия равновесия.
- •7.Плоская система сил. Пара сил.
- •8.Теория пар на плоскости. Момент силы относительно точки. Сложение пар сил в одной плоскости. Условие равновесия плоской системы пары сил.
- •9. Плоская система сил. Центральная теорема статики.
- •10. Приведение плоской системы сил к данному центру. Метод Пуансон.
- •11. Частные случаи приведения плоской системы сил.
- •12. Теорема Вариньона.
- •13. Условия равновесия плоской системы пары сил.
- •14. Равновесие системы тел.
- •15. Пространственная система сил. Момент силы относительно точки и оси.
- •16. Теорема о переносе пары сил в параллельную плоскость.
- •22. Кинематика. Мех. Движение. Пространство и время. Система отсчета.
- •23. Кинематика точки. Способы задания движения точки.
- •24. Скорость и ускорение точки в криволинейном движении.
- •25. Естественные оси. Касательное и нормальное ускорение точки.
- •26. Прямолинейное движение точки.
- •27. Простейшие виды движения твердого тела. Поступательное движение твердого тела.
- •28. Вращение твердого тела вокруг неподвижной оси. Угловая скорость и угловое ускорение. Равномерное и равнопеременное вращение.
- •29. Скорость и ускорение точки вращающегося тела.
- •30. Плоскопараллельное движение твердого тела. Уравнение. Скорость точек. Мгновенный центр скоростей.
- •31. Сложное движение точки. Абсолютное, относительное и переносное движения. Теорема о сложении скоростей.
- •32. Динамика. Движение свободной материальной точки. Основные законы классической механики.
- •33. Инерциальная система отсчета. Принцип относительности классической динамики.
- •34. Дифференциальные уравнения движения свободной материальной точки.
- •35. Естественные уравнения движения свободной материальной точки.
- •36. Прямая и обратная задачи динамики.
- •38. Теорема об изменении количества движения материальной точки.
- •39. Теорема об изменении момента количества движения материальной точки.
- •40. Работа и мощность силы.
- •41. Теорема об изменении кинетической энергии материальной точки.
- •43. Принцип Даламбера для материальной точки и системы материальных точек.
- •44. Общее уравнение динамики (Принцип Даламбера-Лагранжа).
6.Система сходящихся сил. Условия равновесия.
Силы, действующие на тело, называются сходящимися, если линии их действия пересекаются в одной точке (рис. 2.1).
Теорема. Система сходящихся сил, действующих на твердое тело, имеет равнодействующую, которая равна геометрической сумме этих сил и проходит через точку пересечения их линий действия.
Доказательство. Перенесем все силы по линиям их действия в точку пересечения (рис. 2.2). Последовательно складывая по аксиоме 3:
,
и т.д., находим
.
Геометрически равнодействующая может быть найдена как замыкающая сторона силового многоугольника (рис. 2.3). Аналитически − по проекциям на оси координат
,
,
.
Модуль и направление равнодействующей определяются формулами:
,
,
,
.
2.2. Условия равновесия системы сходящихся сил.
Условие равновесия в геометрической форме. Для равновесия системы сходящихся сил, действующих на твердое тело, необходимо и достаточно, чтобы силовой многоугольник, построенный на этих силах, был замкнут.
Условие равновесия в аналитической форме. Для равновесия системы сходящихся сил необходимо и достаточно равенство нулю алгебраических сумм проекций всех сил данной системы на каждую из координатных осей.
Доказательство
условия равновесия в аналитической
форме. Из теоремы о существовании
равнодействующей условие равновесия
эквивалентно равенству
.
То есть
,
,
,
Или
,
,
.
Эти равенства позволяют определять неизвестные величины, в частности реакции связей.
7.Плоская система сил. Пара сил.
Сложение двух
параллельных
сил:
равнодейст-ющая
двух парал-ых сил F1
и F2
одного направления имеет такое же
направление, ее модуль равен сумме
модулей слагаемых сил, а точка приложения
делит отрезок между точками приложения
сил на части обратно пропорциональные
модулям сил: R=F1
+ F2;
АС/ВС=F2/F1.
Равнодействующая двух противоположно
направленных паралл-ных сил имеет
направление силы большей по модулю и
модуль, равный разности модулей сил.
Система двух параллельных сил, равных по модулю и направленных в разные стороны, назыв. парой сил.
8.Теория пар на плоскости. Момент силы относительно точки. Сложение пар сил в одной плоскости. Условие равновесия плоской системы пары сил.
Система двух параллельных сил, равных по модулю и направленных в разные стороны, назыв. парой сил. Кратчайшее расстояние между линиями действия этих сил назыв. плечом пары "h". Действия пары сил характеризуется ее моментом. Момент пары сил M = Fh – произведение модуля одной из сил пары на ее плечо.
Момент пары сил
–
вектор, направленный перпендикулярно
плоскости сил, так, что, если смотреть
ему навстречу, то видим вращение пары
против хода час.стр. M>0,
если против час.стр., M<0
– по час.стр (на рис М>0).
Теоремы о парах.
1) Две пары, лежащие в одной плоскости,
можно заменить одной парой, лежащей в
той же плоскости, с моментом, равным
сумме моментов данных двух пар.
.
2) Две пары, имеющие геометрически равные
моменты, эквиваленты. 3) Не нарушая
состояния твердого тела, пару сил можно
переносить в плоскости ее действия.
Т.е. момент пары сил является свободным
вектором. 4) Система нескольких пар сил
эквивалента одной паре, момент которой
равен векторной сумме моментов данных
пар. Т.е. система пар приводится к одной
паре, момент которой равен сумме моментов
всех пар. Условие равновесия пар сил:
– геометрическая сумма их моментов
равна 0. Пары сил, расположенные в одной
плоскости, взаимно уравновеш-тся, если
алгебраическая сумма их моментов Мi=0.
Момент силы
относительно точки
– вектор, численно равный произведению
модуля силы на плечо и направленный
перпендикулярно плоскости, содержащей
силу и точку, в такую сторону, чтобы
смотря ему навстречу, видеть силу
стремящейся повернуться против хода
час.стрелки. Плечо "h"–
кратчайшее расстояние от точки до линии
действия силы.
– момент силы равен векторному
произведению вектора
на вектор
.
Модуль векторного произведения:
RFsin=
Fh.
Для плоской сист. сил обычно находят не
вектор момента, а только его модуль:
Fh,
>0 – против час.стр.; <0 – по час.стр.