Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
resposta e perguntas do exame de detali machina....docx
Скачиваний:
2
Добавлен:
17.04.2019
Размер:
190.89 Кб
Скачать

49) Валы и Оси

Вал– деталь машины или механизма предназначенная для передачи вращающего или крутящего момента вдоль своей осевой линии. Большинство валов – это вращающиеся (подвижные) детали механизмов, на них обычно закрепляются детали, непосредственно участвующие в передаче вращающего момента (зубчатые колёса, шкивы, звёздочки цепных передач и т.п.).

Ось – деталь машины или механизма, предназначенная для поддержания вращающихся частей и не участвующая в передаче вращающего или крутящего момента. Ось может быть подвижной (вращающейся, рис. 9.2а) или неподвижной (рис. 9.2б).

Классификация валов и осей:

1.По форме продольной геометрической оси -

- прямые

- коленчатые

-гибкие

2.по функциональному назначению -

- валы передач

- трансмиссионные валы

- коренные валы - валы,

3.прямые валы по форме исполнения и наружной поверхности -

-гладкие валы

-ступенчатые валы

- полые

- шлицевые валы

- валы, совмещённые

50) Расчет осей на статическую прочность

Последовательность проектировочного расчета.

Во вращающихся осях напряжение изгиба изменяется по симметрично­му циклу: для них принимают , в неподвижных . Для вращающихся осей из Ст5 = 50 ÷ 80 МПа, для невра- щающихся = 100 ÷ 160 МПа (меньшие значения рекомендуется прини­мать при наличии концентраторов напряжений). 

Проверочный расчет осей на статическую прочность.

Этот расчет производят по формуле

(4)

где — расчетное напряжение изгиба в опасном сечении оси.

51)Проектный расчёт валов производят только на статическую прочность по передаваемому крутящему моменту T. При этом расчёте определяется минимальный из всех диаметр вала (чаще всего таковым является диаметр выходного конца вала), а с целью компенсации неучтённых изгибных нагрузок и других факторов (концентраторов напряжений, шпоночных канавок и т.п.), влияющих на прочность вала, принимают заниженные значения допускаемых касательных напряжений [t]к » (0,025…0,030)×sВ.

В этом случае диаметр вала определяется по известной зависимости сопромата

; (9.1)

где tк – максимальные касательные напряжения, действующие в наружных волокнах опасного сечения вала; Tк - крутящий момент, передаваемый через это сечение; Wп – полярный момент инерции рассматриваемого сечения.

Учитывая, что большинство валов в машиностроении имеет круговое либо кольцевое (для полых валов) поперечное сечение, после представления полярного момента инерции сечения через его диаметры из (9.1) получаем

; (9.2)

где D – внешний диаметр вала; b = d/D – относительный диаметр осевого отверстия полого вала (d – абсолютное значение диаметра этого отверстия). При этом можно отметить, что для b £ 0,5 расчёт полого вала как сплошного даёт погрешность менее 2,5% от диаметра вала, значительно перекрываемую за счёт занижения допускаемых напряжений. Отсюда следует возможность рассчитывать толстостенные валы как сплошные (выражение в скобках принять равным 1).

52-53)В силу этого основными критериями работоспособности валов и вращающихся осей являются усталостная прочность и жёсткость.

При расчете осей и валов их прочность оценивают по коэффициенту запаса усталостной прочности, а жёсткость – величиной прогиба под действием рабочих нагрузок, углом поворота отдельных сечений (чаще всего опорных сечений цапф) в плоскости осевого сечения и углом закру­чивания поперечных сечений под действием крутящего момента.

. (9.5)

Проверочный расчёт валов на жёсткость чаще всего выполняется по нескольким критериям, поскольку упругие перемещения валов и их элементов оказывают неблагоприятное влияние на работу связанных с валом соединений, подшипников, зубчатых колёс и других деталей – увеличивают концентрацию контактных напряжений и износ, снижают сопротивление усталости деталей и соединений, понижают точность механизмов, увеличивают вибрации и т.п. Наиболее часто при этом виде расчёта определяются: 1) прогиб вала в определённых сечениях (например, под зубчатым или червячным колесом); 2) максимальный прогиб вала; 3) поворот отдельных сечений вала, вызванный его изгибом (чаще всего в местах установки подшипников); 4) закручивание вала под действием рабочих моментов.  

Расчет валов на колебания. Колебания валов могут быть поперечными (изгибными) и крутильными.

. (9.16)

При этом частота собственных колебаний равна корню квадратному из отношения жесткости к характеристике инерции:

. (9.17)

В знаменатель обоих выражений (9.16) входит разность между собственной частотой вала и частотой действия вынуждающего фактора. При совпадении этих двух частот величина деформации устремляется в бесконечность, что эквивалентно разрушению. Явление совпадения вынуждающей и собственной частот называется резонансом. Если вынуждающая частота больше собственной, то, во-первых, деформация меняет знак (то есть по направлению становится противоположной вынуждающему фактору), во-вторых, с увеличением вынуждающей частоты величина деформации становится все меньше. Большинство валов передач работают в зарезонансном режиме (wв >> w0), и в таких случаях при разгоне и торможении машины вал проходит через область резонанса. Длительная работа вала в резонансном режиме ведёт к увеличению его деформаций, а, следовательно, и напряжений в нём, способствуя тем самым быстрому его разрушению.

54) Подшипником -принято называть часть опоры, непосредственно взаимодействующей с цапфой вала или оси.

Без подшипников невозможно существование ни стационарных, ни, тем более, подвижных машин (транспортных и боевого применения). Качество конструкции подшипников, условия их смазки, защищённость от воздействия неблагоприятных факторов внешней среды в значительной мере определяют работоспособность, долговечность и энергетическую эффективность машин.

Классификация подшипников:

1.По направлению силовой нагрузки -

- радиальные подшипники

- упорные подшипники

- радиально-упорные подшипники

-упорно-радиальные подшипники

2.В зависимости от вида трения -

-подшипники качения;

- подшипники скольжения

55) Подшипником скольжения -называют опору для поддержания вала (или вращающейся оси). В таком подшипнике цапфа вращающегося вала (или оси) проскальзывает по опоре.

Радиальные подшипники скольжения (или просто подшипники скольжения) предназначены для восприятия радиальной нагрузки. В таких подшипниках поверхности цапфы вала (или оси) и подшипника находятся в условиях относительного скольжения. При этом возникает трение, кото­рое приводит к изнашиванию пары вал (ось) — подшипник.

Для уменьшения изнашивания необходимо рационально выбирать матери­ал трущихся пар и обеспечить нормальные условия смазывания рабочих по­верхностей.

Конструкции подшипников скольжения

Подшипники бывают неразъемные и разъемные:

Неразъемные подшипники могут быть выполнены за одно целое со ста­ниной (рис. 1) или в виде втулки 1, установленной в корпус подшипни­ка 2 (рис. 2).

В первом случае станину 1, а во втором — втулку 1 изготовляют из ма­териалов, обладающих хорошими антифрикционными свойствами: анти­фрикционного чугуна; бронзы оловянной; латуни; баббитов; алюминиевых сплавов; порошковых материалов; текстолита; капрона; специально обра­ботанного дерева; резины (при смазывании водой); графита (в виде порош­ка, из которого прессуют вкладыши) и др.

 Корпуса подшипников можно изготовлять из чугуна или стали литыми или сварными. Конструкции (конфигурации) корпусов подшипников мо­гут быть самыми разнообразными.

Разъемный подшипник отличается от неразъемного тем, что в нем втулка заменена вкладышами 2 и 3, корпус подшипника разъемный и состоит из собственно корпуса 7 и крышки 4, соединенных болтами или шпильками 5. Вкладыши изготовляют из антифрикционных материалов или двух металлов (тело вкладыша из стали, а рабочую часть толщиной 1—3 мм заливают баббитом или свинцовой бронзой). Во внутренней по­лости вкладышей делают канавку 1 (рис.5), в которую через отверстие 2 подводят смазочный материал.

Материал вкладышей выбирают с учетом условий работы, назначения и конструкции опор, а также стоимости и дефицитности материала и должен иметь:

1) малый коэффициент трения и высокую сопротивляемость заеданию в периоды отсутствия режима жидкостного трения (пуски, торможение и т. п.);

2) достаточную износостойкость наряду со способностью к при­работке. Износостойкость вкладыша должна быть ниже износо­стойкости цапфы, так как замена вала обходится значительно до­роже, чем замена вкладыша;

3) достаточно высокие механические характеристики и особенно высокую сопротивляемость хрупкому разрушению при действии ударных нагрузок.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]