Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
семинар по биологическим мембранам.doc
Скачиваний:
8
Добавлен:
17.04.2019
Размер:
159.74 Кб
Скачать

4. Диффузия липидных молекул в мембранах: латеральная, флип - флоп. Частота перескоков молекул. Люминесцентные методы изучения подвижности молекул в мембране, флуоресцентные метки и зонды.

Латеральная диффузия - это хаотическое тепловое перемещение молекул липидов и белков в плоскости мембраны. При латеральной диффузии рядом рас­положенные молекулы липидов скачком меняются местами, и вследствие таких последовательных перескоков из одного мес­та в другое молекула перемещается вдоль поверхности мемб­раны. Среднее квадратичное перемещение S кв. молекул при диф­фузии за время t можно оценить по формуле Эйнштейна:

Перемещение молекул по поверхности мембраны клетки за время t определено экспериментально методом флуоресцентных меток - флюоресцирующих молекулярных групп. Флуоресцентные метки делают флюоресцирующими молекулы, дви­жение которых по поверхности клетки можно изучать, например, исследуя под микроскопом скорость расплывания по поверхности клетки флюоресцирующего пятна, созданного такими молекулами.

Частота перескоков (число перескоков в секунду) молекулы с одного места на другое вследствие латеральной диффузии может быть найдена по формуле: где f - площадь, занимаемая одной молекулой на мембране.

Флип-флоп - это диффузия молекул мембранных фосфолипидов поперек мембраны.

Скорость перескоков молекул с одной поверхности мембра­ны на другую (флип-флоп) определена методом спиновых ме­ток в опытах на модельных липидных мембранах - липосомах Часть фосфолипидных молекул, из которых формировались липосомы, метились присоединенными к ним спиновыми мет­ками. Липосомы подвергались воздействию аскорбиновой кис­лоты, вследствие чего неспаренные электроны на молекулах пропадали: парамагнитные молекулы становились диамагнит­ными, что можно было обнаружить по уменьшению площади под кривой спектра ЭПР.

Таким образом, перескоки молекул с одной поверхности бислоя на другую (флип-флоп) совершаются значительно медлен­нее, чем перескоки при латеральной диффузии. Среднее время, через которое фосфолипидная молекула совершает флип-флоп (Т ~ 1 час), в десятки миллиардов раз больше среднего времени, характерного для перескока молекулы из одного места в сосед­нее в плоскости мембраны.

5. Электрохимический потенциал. Транспорт веществ через биологическую мембрану: пассивный и активный, принципиальные различия между ними.

Химическим потенциалом данного вещества Мю называется величина, численно равная энергии Гиббса, приходящаяся на один моль этого вещества. Математически он определяется как частная производная от энергии Гиббса G по количеству k-го вещества, при постоянстве температуры Т, давления Р и количеств всех других веществ m1 (l не = k):

Пассивный транспорт - это перенос вещества из мест с боль­шим значением электрохимического потенциала к местам с его меньшим значением .

Пассивный транспорт идет с уменьшением энергии Гиббса, и поэтому этот процесс может идти самопроизвольно без затра­ты энергии. Плотность потока вещества j при пассивном транспорте под­чиняется уравнению Теорелла: где U - подвижность частиц, С - концентрация. Знак минус показывает, что перенос происходит в сторону убывания Мю. Плотность потока вещества - это величина, численно равная количеству вещества, перенесенного за единицу времени через единицу площади поверхности, перпендикулярной направле­нию переноса:

Уравнение Нернста—Планка:

Активный транспорт — это перенос вещества из мест с мень­шим значением электрохимического потенциала в места с его большим значением.

Активный транспорт в мембране сопровождается ростом энергии Гиббса, он не может идти самопроизвольно, а только в сопряжении с процессом гидролиза аденозинтрифосфорной кислоты (АТФ), то есть за счет затраты энергии, запасенной в макроэргических связях АТФ. Активный транспорт веществ через биологические мембра­ны имеет огромное значение. За счет активного транспорта в организме создаются градиенты концентраций, градиенты электрических потенциалов, градиенты давления и т.д., под­держивающие жизненные процессы, то есть с точки зрения тер­модинамики активный перенос удерживает организм в нерав­новесном состоянии, поддерживает жизнь.