- •Игнатьев в.К.
- •Оглавление
- •Тема 1. Колебательные системы 7
- •Тема 2. Консервативные системы с одной степенью свободы Вопрос 4 17
- •Тема 3. Свободные колебания в диссипативных системах с одной степенью свободы Вопрос 6 24
- •Вопрос 7 26
- •Тема 4. Вынужденные колебания в системе с одной степенью свободы Вопрос 9 31
- •Тема 5. Параметрические системы с одной степенью свободы 40
- •Тема 6. Автоколебательные системы с одной степенью свободы 45
- •Тема 7. Колебательные системы с двумя степенями свободы 58
- •Тема 8. Колебания в линейных системах со многими степенями свободы 74
- •Тема 9. Колебания в распределённых системах. 86
- •Введение
- •Тема 1. Колебательные системы
- •1.1. Классификация колебательных систем
- •1.2. Уравнения линейных дискретных колебательных систем Вопрос 1
- •1.3. Автономные системы, символические уравнения Вопрос 2
- •1.4. Неавтономные системы, параметрический генератор
- •1.5. Уравнение Лагранжа для колебательных систем Вопрос 3
- •1.6. Фазовое пространство, представление движения
- •Тема 2. Консервативные системы с одной степенью свободы Вопрос 4
- •2.1. Колебания математического маятника
- •2.2. Метод последовательных приближений
- •2.3. Свободные колебания в резонансном контуре с нелинейной ёмкостью без затухания Вопрос 5
- •Тема 3. Свободные колебания в диссипативных системах с одной степенью свободы Вопрос 6
- •3.1. Линейный контур с затуханием
- •3.2. Метод медленно меняющихся амплитуд, укороченные уравнения Вопрос 7
- •3.3. Применение метода мма к колебательным системам Вопрос 8
- •Тема 4. Вынужденные колебания в системе с одной степенью свободы Вопрос 9
- •4.1. Вынужденные колебания в линейной системе при гармоническом воздействии
- •4.2. Вынужденные колебания в консервативной нелинейной системе при гармоническом силовом воздействии, гармонический баланс Вопрос 10
- •4.3. Генерация высших гармоник Вопрос 11
- •4.4. Метод мма для колебательных систем с малыми нелинейностями и потерями при гармоническом силовом воздействии
- •Тема 5. Параметрические системы с одной степенью свободы
- •5.1. Параметрическое воздействие на колебательный контур, передача энергии
- •5.2. Параметрические генераторы и усилители
- •Тема 6. Автоколебательные системы с одной степенью свободы
- •6.1. Классификация автоколебательных систем
- •6.2. Автоколебательные системы томпсоновского типа
- •6.3. Инерциальная нелинейность, стабилизация амплитуды
- •6.4. Автоколебательные системы с внешним воздействием, синхронизация колебаний
- •Тема 7. Колебательные системы с двумя степенями свободы
- •7.1. Парциальные системы и частоты, нормальные координаты и частоты
- •7.2. Вынужденные колебания в системе с двумя степенями свободы
- •7.3. Двухконтурный параметрический усилитель
- •7.4. Двухконтурный автогенератор
- •7.5. Затягивание колебаний
- •7.6. Синхронизация генераторов, метод Хохлова
- •Тема 8. Колебания в линейных системах со многими степенями свободы
- •8.1. Собственные колебания в консервативных системах
- •8.2. Ортогональность нормальных колебаний и экстремальные свойства собственных частот
- •8.3. Вынужденные колебания в системе с n степенями свободы
- •8.4. Колебания в однородных цепочках
- •8.5. Параметрические системы, соотношения Менли-Роу
- •Тема 9. Колебания в распределённых системах.
- •9.1. Телеграфные уравнения, волновое уравнение
- •9.2. Собственные колебания распределённых систем конечной длины
- •9.3. Вынужденные колебания в распределённых системах
- •9.4. Лазер как автогенератор
- •Список рекомендуемой литературы1
1.4. Неавтономные системы, параметрический генератор
В пункте 1.1. вводилось определение неавтономных систем, и отмечались способы воздействия на неавтономную систему. Рассмотрим на конкретных примерах силовое и параметрическое воздействия. Начнём с силового воздействия: для этого вернёмся к генератору на туннельном диоде с дополнительным источником напряжения (рис. 16), который и играет роль внешнего воздействия.
Уравнение, описывающее колебательные процессы в этом генераторе, от (1.13) будет отличаться тем, что добавится внешнее воздействие:
|
(1.24) |
|
Рис. 16. Генератор на туннельном диоде. |
Рис. 17. Колебательный контур. |
|
Перейдём к параметрическому воздействию и рассмотрим контур, изображённый на рис. 17. При определённой частоте внешнего воздействия (при резонансе) возможна потеря устойчивости и возникновение колебаний с частотой кратной частоте внешнего воздействия. Опишем эту систему. В качестве обобщённых координат возьмём заряд. Для простоты также пусть Е = 0, тогда, так как u = q/C(t), уравнение колебательного контура запишется в виде:
.
В частном случае (если в качестве переменной ёмкости варикап), т. е. справедлива следующая зависимость
,
символическое уравнение системы принимает вид:
|
(1.25) |
Если t) меняется по гармоническому закону, то получится уравнение Матье, а при произвольном изменении уравнение Хилла.
1.5. Уравнение Лагранжа для колебательных систем Вопрос 3
Уравнение движения Лагранжа удобно тем, что уравнение движения записывается в ковариантной форме, т. е. структура уравнения не меняется при переходе к другим координатам.
Любая механическая система описывается уравнением Ньютона:
|
(1.26) |
и это самая общая форма записи (форма Коши). Известно, что, если заданы начальные условия
и
,
то решение существует и единственно.
В общем случае на уравнение накладываются связи, уменьшая количество независимых координат:
|
(1.27) |
Если у нас есть k связей, то только n = m k координат являются обобщёнными. Выбираем обобщённые координаты q1, …, qn так, чтобы их связь с первичными была точечной:
|
(1.28) |
Допустим, что
силы, действующие на систему, являются
потенциальными, т. е. существует функция
такая, что для каждой силы выполняется
равенство
,
где
.
В этом случае для описания движения в потенциальном поле можно воспользоваться формализмом Лагранжа:
Выбираем обобщённые координаты q1, …, qn.
С помощью уравнения преобразования координат (1.28) записываем выражение для энергии через эти координаты:
.
С учётом преобразования обобщённых скоростей
|
(1.29) |
строим выражение
для кинетической энергии системы
.
Составляем лагранжиан системы
.Записываем уравнение движения системы в виде:
|
(1.30) |
Из (1.30) можно непосредственно найти первый интеграл движения:
|
(1.31) |
Коэффициенты Ci можно найти из начальных условий.
Лагранжев формализм работает только в потенциальном поле, но, если в системе действуют диссипативные силы Qi (трение, потери), то в общем случае уравнение Лагранжа выглядит так:
|
(1.32) |
Простейший случай, когда диссипативные силы являются линейной функцией обобщённых скоростей:
.
Для линейной функции можно построить функцию Рэлея, тогда диссипативные силы это частные производные по обобщённым координатам функции Рэлея:
|
(1.33) |
В этом случае уравнение Лагранжа примет ещё более простой вид:
|
(1.34) |
т. е. для полного описания системы с диссипацией нужно задать две функции: L и .
Если точечное преобразование (1.28) не содержит в явном виде времени, то
|
(1.35) |
Таким образом, энергия системы убывает со скоростью, равной удвоенной функции Рэлея.
