Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Основы теории колебании Игнатьев.doc
Скачиваний:
155
Добавлен:
17.04.2019
Размер:
3.34 Mб
Скачать

9.4. Лазер как автогенератор

Примером автоколебательной системы с распределенными параметрами является оптический квантовый генератор  лазер. Распределенное отрицатель­ное сопротивление в лазере создается активной средой с инверсной населенно­стью и существует в определенной полосе частот вблизи линии поглощения среды. Как правило, в пределах ширины линии люминесценции укладывается несколько собственных частот резонатора, поэтому лазер, в общем случае, генерирует ряд мод с частотами, близкими к собственным частотам резонатора.

Анализ работы лазера обычно проводится методом самосогласованного поля в полуклассическом приближении. Предполагается, что электромагнитное поле, воздействуя на активную среду, создает в ней поляризацию, которая, в свою очередь, является источником электромагнитного поля. При этом элек­тромагнитное поле описывают классическими уравнениями Максвелла, а поля­ризацию среды, определяющую отрицательное нелинейное сопротивление, рас­сматривают на квантовом уровне. При таком подходе поляризация среды зависит не от мгновенного значения напряженности поля, а от его амплитуды, то есть лазер является автогенератором с инерциальной нелинейностью, анало­гичным рассмотренному в пункте 6.2.

В простейшем случае оптического резонатора Фабри-Перро, образованного двумя плоскими зеркалами, расположенными на расстоянии l друг от дру­га, наибольшую добротность имеют аксиально симметричные моды колебаний. Электромагнитное поле таких колебаний медленно меняется в пространстве в направлении, параллельном зеркалам, а его поляризация сохраняется. Это по­зволяет ограничиться рассмотрением одномерного скалярного уравнения Мак­свелла, которое для проводящей немагнитной среды принимает вид

.

(9.24)

Будем считать, что величина характеризует все виды потерь энергии в оптическом резонаторе.

Напряжённость электрического поля можно представить в виде ряда по собственным функциям нормальных мод резонатора

,

(9.25)

где kn = n/l = 2/n  волновое число n-го нормального колебания. Такой вид нормальных колебаний соответствует граничным условиям E(0, t) = E(lt) = 0, когда в точках z = 0 и z = l находятся зеркала с единичным коэффициентом от­ражения. Умножим уравнение (9.24) на sin(kmz) и проинтегрируем по z от 0 до l. Учитывая ортогональность собственных функций разложения (9.25) и гранич­ные условия, получим

,

(9.26)

где Qn  добротность резонатора на n-й моде, n  частота n-й моды, n = nc/l  собственная частота резонатора, Pn  пространственная фурье-компонента поляризации среды, равная

.

При достаточно высокой добротности резонатора и небольшой величины поляризации, когда лазер работает вблизи порога самовозбуждения, для реше­ния уравнения (9.26) можно использовать метод ММА. Будем искать решение (9.26) в виде

,  ,

где En(t), n(t)  медленно меняющиеся за период 2/n амплитуда и фаза n-го колебания, Cn(t) и Sn(t)  медленно меняющиеся компоненты поляризации. В си­лу инерциальной нелинейности активной среды можно считать, что компонен­ты поляризации являются нечётными функциями амплитуд колебаний вида

,  .

(9.27)

Уравнения (9.27) являются материальными уравнениями нелинейной ак­тивной среды, в них опущены колебания комбинационных частот, не попадаю­щие в полосы пропускания оптического резонатора. Коэффициенты уравнений (9.27) для двухуровневого газового лазера рассчитаны У. Лэмбом. С учетом этих соотношений укороченные уравнения для системы (9.26) принимают вид

,

(9.28)

.

(9.29)

Из уравнения (9.28), в частности, следует, что величина 0n определяет усиление активной среды на n-й моде колебаний для слабого сигнала. Поэтому условие самовозбуждения n-й моды можно записать в виде 0n > n/(2Qn). При выполнении этого условия поступление энергии в систему превышает потери в резонаторе на соответствующей частоте.

Рассмотрим сначала случай возбуждения в системе только одной моды, единственной, для которой выполняется условие самовозбуждения. Уравнения (9.28) и (9.29) в этом случае принимают вид:

,  .

Отсюда можно найти стационарную амплитуду и частоту генерации

,  ,

где обозначено  = 0  /(2Q). Отметим, что амплитуда установившихся коле­баний E0 тем больше, чем больше поступление энергии в систему превышает по­тери в ней. Кроме того, E0 зависит от коэффициента нелинейности , как это имеет место и в одноконтурном автогенераторе (см. пункт 6.2). Этот коэффициент определяет уменьшение инверсной населённости, связанное с насыщением активной среды, вызванным колебаниями генерируемой моды. При малой амплитуде частота генерации отличается от собственной частоты резонатора на величину . Коэффициент пропорционален разности между собственной частотой резонатора и частотой спектральной линии атомного перехода. Поэтому он создаёт линейное подтягивание генерируемой частоты к частоте атомного перехода. Нелинейное сла­гаемое даёт зависящее от амплитуды смещение частоты генерации.

Если усиление активной среды превышает потери для двух собственных частот оптического резонатора, то возможна одновременная генерация двух не­зависимых мод колебаний. В случае двухмодового режима укороченные уравнения (9.28) для амплитуд E1 и E2 принимают вид:

,  .

(9.30)

Здесь 1 = 01  1/(2Q1), 2 = 02  2/(2Q2)  коэффициенты, характеризующие превышение усиления над потерями для каждой из мод. Коэффициенты 12 и 21 определяют уменьшение инверсной населенности для каждой моды, вызванное колебаниями другой моды, т. е. эквивалентны коэффициентам связи.

Урав­нения (9.30) удобно переписать для квадратов амплитуд , :

,  .

(9.31)

Система уравнений (9.31) имеет четыре стационарных решения:

;  , ;  , ;

, .

(9.32)

Первое решение соответствует отсутствию генерации, второе и третье  генера­ции одной моды. Четвертое решение описывает режим одновременной генера­ции двух мод.

Устойчивость стационарных решений можно определить стан­дартным методом, анализируя малые отклонения от стационарного состояния.

Коэффициенты 1 и 2 для активной среды всегда положительны. Если оба коэффициента 1 и 2 положительны, т. е. условия самовозбуждения выпол­нены для обеих мод, то режим покоя неустойчив. При 1/12 > 2/1 и 2/21 < 1/2 система генерирует одну моду с X = 1/1, Y = 0. Вторая мода по­давляется модой с большим коэффициентом усиления. Если же 1/12 > 2/1 и 2/21 > 1/2, то в системе могут существовать обе моды колебаний. При сла­бой связи 12 > 1221 происходит одновременная генерация обеих мод.

Ам­плитуды и частоты этих колебаний в стационарном режиме в силу соотношений (9.29) и (9.32) имеют вид

,  .

(9.33)

,  .

(9.34)

Из формулы (9.34), в частности, следует, что частота каждого из колебаний за­висит не только от его амплитуды, но и от амплитуды второго колебания.