- •Игнатьев в.К.
- •Оглавление
- •Тема 1. Колебательные системы 7
- •Тема 2. Консервативные системы с одной степенью свободы Вопрос 4 17
- •Тема 3. Свободные колебания в диссипативных системах с одной степенью свободы Вопрос 6 24
- •Вопрос 7 26
- •Тема 4. Вынужденные колебания в системе с одной степенью свободы Вопрос 9 31
- •Тема 5. Параметрические системы с одной степенью свободы 40
- •Тема 6. Автоколебательные системы с одной степенью свободы 45
- •Тема 7. Колебательные системы с двумя степенями свободы 58
- •Тема 8. Колебания в линейных системах со многими степенями свободы 74
- •Тема 9. Колебания в распределённых системах. 86
- •Введение
- •Тема 1. Колебательные системы
- •1.1. Классификация колебательных систем
- •1.2. Уравнения линейных дискретных колебательных систем Вопрос 1
- •1.3. Автономные системы, символические уравнения Вопрос 2
- •1.4. Неавтономные системы, параметрический генератор
- •1.5. Уравнение Лагранжа для колебательных систем Вопрос 3
- •1.6. Фазовое пространство, представление движения
- •Тема 2. Консервативные системы с одной степенью свободы Вопрос 4
- •2.1. Колебания математического маятника
- •2.2. Метод последовательных приближений
- •2.3. Свободные колебания в резонансном контуре с нелинейной ёмкостью без затухания Вопрос 5
- •Тема 3. Свободные колебания в диссипативных системах с одной степенью свободы Вопрос 6
- •3.1. Линейный контур с затуханием
- •3.2. Метод медленно меняющихся амплитуд, укороченные уравнения Вопрос 7
- •3.3. Применение метода мма к колебательным системам Вопрос 8
- •Тема 4. Вынужденные колебания в системе с одной степенью свободы Вопрос 9
- •4.1. Вынужденные колебания в линейной системе при гармоническом воздействии
- •4.2. Вынужденные колебания в консервативной нелинейной системе при гармоническом силовом воздействии, гармонический баланс Вопрос 10
- •4.3. Генерация высших гармоник Вопрос 11
- •4.4. Метод мма для колебательных систем с малыми нелинейностями и потерями при гармоническом силовом воздействии
- •Тема 5. Параметрические системы с одной степенью свободы
- •5.1. Параметрическое воздействие на колебательный контур, передача энергии
- •5.2. Параметрические генераторы и усилители
- •Тема 6. Автоколебательные системы с одной степенью свободы
- •6.1. Классификация автоколебательных систем
- •6.2. Автоколебательные системы томпсоновского типа
- •6.3. Инерциальная нелинейность, стабилизация амплитуды
- •6.4. Автоколебательные системы с внешним воздействием, синхронизация колебаний
- •Тема 7. Колебательные системы с двумя степенями свободы
- •7.1. Парциальные системы и частоты, нормальные координаты и частоты
- •7.2. Вынужденные колебания в системе с двумя степенями свободы
- •7.3. Двухконтурный параметрический усилитель
- •7.4. Двухконтурный автогенератор
- •7.5. Затягивание колебаний
- •7.6. Синхронизация генераторов, метод Хохлова
- •Тема 8. Колебания в линейных системах со многими степенями свободы
- •8.1. Собственные колебания в консервативных системах
- •8.2. Ортогональность нормальных колебаний и экстремальные свойства собственных частот
- •8.3. Вынужденные колебания в системе с n степенями свободы
- •8.4. Колебания в однородных цепочках
- •8.5. Параметрические системы, соотношения Менли-Роу
- •Тема 9. Колебания в распределённых системах.
- •9.1. Телеграфные уравнения, волновое уравнение
- •9.2. Собственные колебания распределённых систем конечной длины
- •9.3. Вынужденные колебания в распределённых системах
- •9.4. Лазер как автогенератор
- •Список рекомендуемой литературы1
Тема 3. Свободные колебания в диссипативных системах с одной степенью свободы Вопрос 6
В неконсервативных системах полная энергия не сохраняется, поэтому уравнение фазовых траекторий уже не может иметь вид уравнения (2.5). Мы можем записать его с учётом соотношения (1.35), где введена функция Рэлея, которая описывает убыль энергии. Функция Рэлея:
;
Так как функция (x, y) описывает убыль энергии, то можно сказать, что функция W(t) определяет запас колебательной энергии системы. В консервативной системе она бы сохранялась. Естественно, что для автономных диссипативных систем dW/dt < 0, т. е. энергия с течением времени уменьшается.
Для простейшей диссипативной системы уравнение (2.5) принимает вид:
|
(3.1) |
Введём так называемую функцию диссипации
.
Теперь продифференцируем уравнение (3.1) по времени, тогда
или
.
Это уравнение по сути дела есть уравнение закона Ньютона: ускорение равняется действующей силе. Здесь F(x) потенциальная сила, зависящая от координаты, а f(x, y)/y сила трения, зависящая от скорости.
В физически реализуемых колебательных системах диссипация всегда связана с движением. Для покоящегося тела диссипации быть не должно, т. е. f(x, y)/y 0 при y 0. Мы сказали, что для диссипативных систем dW/dt < 0, а это значит, что функция f(x, y) > 0. Следовательно, функция f(x, y)/y имеет знак совпадающий со знаком y.
Наличие диссипации в системе изменяет характер особых точек. Если для математического маятника особыми точками были центр и седло, то для диссипативных систем вместо центра появляются фокус или узел, в зависимости от величины диссипации.
Для анализа систем с малыми диссипациями и малыми нелинейностями существуют специальные приближённые методы, в частности, метод медленно меняющихся амплитуд. Рассмотрим этот метод на задачах, имеющих аналитическое решение (чтобы было с чем сравнивать), а потом уже будем применять там, где нет аналитических решений.
3.1. Линейный контур с затуханием
Рассматриваем RLC колебательный контур простейшая система с затуханием. Мы зарядили конденсатор, и в момент времени t0 замкнули ключ (рис. 22). Уравнение колебаний в такой системе: |
Рис. 22. Линейный контур с затуханием. |
|
|
(3.2) |
|
Точка равновесия x = 0 представляет собой устойчивый фокус. Найдём уравнение фазовых траекторий. Для этого преобразуем это уравнение стандартным образом:
|
||
Откуда просто получаем уравнение фазовых траекторий
|
(3.3) |
Это уравнение не очень удобно, так как в правой части зависит как от x, так и от y, поэтому введём новую переменную z = y/x, тогда (3.3) перепишем в виде
.
Выполним некоторые элементарные преобразования:
,
или, проинтегрировав,
;
мы обозначили
.
Запишем z через x
и y, и возведём в exp:
|
(3.4) |
У нас получились уравнение фазовой траектории в явном виде. Придадим этому уравнению более удобную форму. Для этого введём ещё одни новые переменные u = y + x, v = x. Если 0 > (затухание мало), то действительное число, тогда (3.4) принимает вид:
.
Перейдём к полярным координатам: v = rcos, u = rsin, тогда
|
(3.5) |
Интегральная кривая соответствующая этому случаю изображена на рис. 23.
Если затухание велико, т. е. 0 < , тогда 2 отрицательное, и мнимое число ( = iq). Опять, путём несложных преобразований, получим уравнение
|
(3.6) |
Фазовый портрет для этого случая показан на рис. 24.
Рис. 23. Фазовый портрет системы с затуханием меньше критического. |
Рис. 24. Фазовый портрет системы с затуханием больше критического. |
При 0 > мы имеем дело с затухающими колебаниями линейного осциллятора, фазовый портрет которых представляет собой совокупность спиралей, стягивающихся в особую точку типа фокус. Для 0 < система становится апериодической, и на фазовой плоскости движения изображаются фазовыми траекториями, имеющими вид кривых, сходящихся в особую точку типа узел без обхода вокруг неё. В обоих случаях в диссипативных системах особые точки (фокус и узел) устойчивы и соответствуют единственному положению равновесия системы состоянию покоя, к которому система приходит из любых начальных условий, при любом начальном смещении или скорости.

.