
- •Ответы на вопросы химия
- •Экзо- и эндотермические реакции. Внутренняя энергия. Энтальпия. Стандартная энтальпия образования вещества. Тепловой эффект реакции
- •Вопрос 2. Закон Гесса и следствия из него. Применение закона для термохимических расчетов. Примеры
- •Следствия из закона Гесса
- •Вопрос 3. Понятие об энтропии. Изменение энтропии в самопроизвольно протекающих процессах. Стандартная энтропия вещества.
- •Вопрос 6. Применение закона действия масс для реакций, протекающих в несколько стадий. Лимитирующая стадия. Особенности кинетики гетерогенных процессов.
- •Вопрос 7 Зависимость скорости реакции от температуры. Правило Вант-Гоффа. Энергия активации. Реакционная способность веществ. Уравнение Аррениуса
- •Вопрос 8 Влияние катализатора на скорость химических реакций. Гомогенный и гетерогенный катализ. Специфичность действия катализатора.
- •Вопрос 9 Обратимые и необратимые химические реакции. Химическое равновесие. Константа равновесия, физический смысл. Связь константы равновесия с энергией Гиббса. Принцип Ле-Шателье.
- •Вопрос 10. Фазовые равновесия. Правило фаз Гиббса. Фазовые диаграммы для однокомпонентных систем.
- •Вопрос 12. Состояние электрона в атоме. Квантовые числа, их физический смысл, численные значения.
- •Вопрос 13 . Строение электронных оболочек многоэлектронных атомов. Принцип Паули. Правило Хунда. Правило Клечковского.
- •Вопрос 14. Периодический закон д.И. Менделеева. Структура Периодической системы с точки зрения строения атома. Период. Группа. Подгруппа. Физический смысл периодичности.
- •Вопрос 15. Свойства атомов. Радиусы атомов. Энергия ионизации. Сродство к электрону. Электроотрицательность.
- •Вопрос 16. Кислотно-основные и окислительно-восстановительные свойства соединений элементов и их изменение в Периодической системе элементов д.И. Менделеева.
- •Вопрос 24. Особенности реакций и равновесия в растворах электролитов. Произведение растворимости
- •Вопрос 19 Растворы электролитов. Теории кислот и оснований: теория электролитической диссоциации, протонная и электронная теории. Степень диссоциации. Сильные и слабые электролиты.
- •Вопрос 20. Факторы, влияющие на степень диссоциации электролитов. Определение степени диссоциации. Связь степени диссоциации с изотоническим коэффициентом.
- •Вопрос 21. Свойства слабых электролитов. Константа диссоциации. Закон разбавления Оствальда. Факторы, влияющие на равновесие диссоциации слабых электролитов.
- •Вопрос 22. Состояние сильных электролитов в растворе. Кажущаяся степень диссоциации. Активность. Коэффициент активности. Ионная сила раствора.
- •Вопрос 23 Электролитическая диссоциация воды. Ионное произведение воды. Водородный показатель. Кислотно-основные индикаторы.
- •Вопрос 25. Гидролиз солей. Степень гидролиза. Константа гидролиза. Факторы, влияющие на степень гидролиза. Примеры.
- •4.Гидролиз по катиону и аниону. Соли, образованные слабым основани-
- •Вопрос 28. Электролиз расплавов и растворов. Последовательность катодных и анодных процессов. Растворимый и нерастворимый аноды. Законы Фарадея.
- •Вопрос 29. Химическая и электрохимическая коррозия с кислородной и водородной деполяризацией. Основные методы защиты металлов от коррозии.
- •Вопрос 30. Общие свойства металлов. Классификация металлов. Способы получения металлов. Пирометаллургия. Гидрометаллургия. Электрометаллургия. Способы получения металлов высокой степени чистоты.
Вопрос 14. Периодический закон д.И. Менделеева. Структура Периодической системы с точки зрения строения атома. Период. Группа. Подгруппа. Физический смысл периодичности.
Периодический закон — фундаментальный закон природы, открытый Д.И. Менделеевым в 1869 году при сопоставлении свойств известных в то время химических элементов и величин их атомных масс. П З был сформулирован Д. И. Менделеевым в следующем виде (1871): «свойства простых тел, а также формы и свойства соединений элементов, а потому и свойства образуемых ими простых и сложных тел, стоят в периодической зависимости от их атомного веса.
В настоящее время Периодический закон Д. И. Менделеева имеет следующую формулировку: «свойства химических элементов, а также формы и свойства образуемых ими простых веществ и соединений находятся в периодической зависимости от величины зарядов ядер их атомов».. Графическим (табличным) выражением закона является разработанная Менделеевым ПСХЭ.
ПСХЭ. (7 периодов, 8 групп, отдельно показаны элементы - лантаноиды и актиноиды). Периоды - это горизонтальные ряды таблицы, они подразделяются на малые и большие. В малых периодах находится 2 элемента (1-й период) или 8 элементов (2-й, 3-й периоды), в больших периодах - 18 элементов (4-й, 5-й периоды) или 32 элемента (6-й, 7-й период). Каждый период начинается с типичного металла, а заканчивается неметаллом (галогеном) и благородным газом. Группы - это вертикальные последовательности элементов, они нумеруется римской цифрой от I до VIII и русскими буквами А и Б. Короткопериодный вариант Периодической системы включал подгруппы элементов (главную и побочную). Подгруппа - это совокупность элементов, являющихся безусловными химическими аналогами; часто элементы подгруппы обладают высшей степенью окисления, отвечающей номеру группы. В А-группах химические свойства элементов могут меняться в широком диапазоне от неметаллических к металлическим (например, в главной подгруппе V группы азот - неметалл, а висмут - металл). В Периодической системе типичные металлы расположены в IА группе (Li-Fr), IIА (Mg-Ra) и IIIА (In, Tl). Неметаллы расположены в группах VIIА (F-Al), VIА (O-Te), VА (N-As), IVА (C, Si) и IIIА (B). Некоторые элементы А-групп (бериллий Ве, алюминий Al, германий Ge, сурьма Sb, полоний Po и другие), а также многие элементы Б-групп проявляют и металлические, и неметаллические свойства (явление амфотерности). Для некоторых групп применяют групповые названия: IА (Li-Fr) - щелочные металлы, IIА (Ca-Ra) - щелочноземельные металлы, VIА (O-Po) - халькогены, VIIА (F-At) - галогены, VIIIА (He-Rn) - благородные газы.
Периодичность заключается в в периоде находятся элементы у которых одинаковое кол-во электронных слов. В группе находятся элементы имеющие одинаковое кол-во электронов на внешнем уровне. Период начинается со щелочного металла и завещается инертным газом. Происходит изменение свойств от основных через амфотерные к кислотным
Вопрос 15. Свойства атомов. Радиусы атомов. Энергия ионизации. Сродство к электрону. Электроотрицательность.
Атомы не имеют отчётливо выраженной внешней границы, поэтому их размеры определяются по расстоянию между ядрами соседних атомов, которые образовали химическую связь или по расстоянию до самой дальней из стабильных орбит электронов в электронной оболочке этого атома. Радиус зависит от положения атома в периодической системе, вида химической связи, числа ближайших атомов и квантово- механического свойства , известного как спин. В ПСХЭ размер атома увеличивается при движении сверху вниз по столбцу и уменьшается при движении по строке слева направо. Соответственно, самый маленький атом — это атом гелия, , а самый большой — атом цезия.
Энергия ионизации атома Ei - минимальная энергия, необходимая для удаления электрона из атома на бесконечность в соответствии с уравнением Х = Х+ + е−
Ее значения известны для атомов всех элементов ПС. При движении слева направо по периоду энергия ионизации, постепенно увеличивается, при увеличении порядкового номера в пределах группы - уменьшается. Минимальные первые потенциалы ионизации имеют щелочные металлы, максимальные - благородные газы.
Сродство атома к электрону Ae - способность атомов присоединять добавочный электрон и превращаться в отрицательный ион. Мерой сродства к электрону служит энергия, выделяющая или поглощающаяся при этом. Сродство к электрону равно энергии ионизации отрицательного иона Х−: Х− = Х + е−
Наибольшим сродством к электрону обладают атомы галогенов. Для ряда элементов сродство к электрону близко к нулю или отрицательно, что значит отсутствие устойчивого аниона для данного элемента.
Обычно сродство к электрону для атомов различных элементов уменьшается параллельно с ростом энергии их ионизации.
Электротрицательность характеризует способность атома химического элемента смещать в свою сторону электронное облако при образовании химической связи (в сторону элемента с более высокой электроотрицательностью). Американский физик Малликен предложил определять электроотрицательность как среднеарифметическую величину между потенциалом ионизации и сродством к электрону: χ = 1/2 (Ei + Ae)
Л. Полинг принял электроотрицательность фтора равной 4 (наибольшее значение), для цезия χ принимает наименьшее значение.
Электроотрицательность в количественном отношении представляет собой приближенную величину, поскольку она зависит от того, в состав какого конкретного соединения входит данный атом.