Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
26,27,28.docx
Скачиваний:
11
Добавлен:
16.04.2019
Размер:
171.74 Кб
Скачать

3)Закон сохранения количества движения системы

Из теоремы об изменении количества движения системы можно получить следую­щие важные следствия:

1) Пусть сумма всех внешних сил, действующих на систему, равна нулю:

Тогда из уравнения  следует, что при этом . Таким образом, если сумма всех внешних сил, действующих на систему, равна нулю, то вектор количества движения системы будет постоянен по модулю и направлению.

2) Пусть внешние силы, действующие на систему, таковы, что сумма их проекций на какую-нибудь ось (например Оx) равна нулю:

Тогда из уравнения  следует, что при этом . Таким образом, если сумма проекций всех действующих внешних сил на какую-нибудь ось равна нулю, то проекция количества движения системы на эту ось есть величина постоянная.

Эти результаты и выражают закон сохранения количества движения системы. Из них следует, что внутренние силы изменить суммарное количество движения системы не могут. Рассмотрим неко­торые примеры:

а) Явление отдачи или отката. Если рассматривать винтовку и пулю как одну систему, то давление пороховых газов при выстреле будет силой внутренней. Эта сила не может изменить суммарное количество движения системы. Но так как пороховые газы, действуя на пулю, сообщают ей некоторое количество движения, направленное вперед, то они одновременно должны сообщить винтовке такое же количество движения в обратном направлении. Это вызовет движение винтовки назад, т.е. так называемую отдачу. Аналогичное явление получается при стрельбе из орудия (откат).

б) Работа   гребного   винта   (пропеллера). Винт сообщает некоторой массе воздуха (или воды) движение вдоль оси винта, отбрасывая эту массу назад. Если рассматривать отбрасываемую массу и самолет (или судно) как одну систему, то силы взаимодействия винта и среды как внутренние не могут изменить суммарное коли­чество движения этой системы. Поэтому при отбрасывании массы воздуха (воды) назад самолет (или судно) получает соответствующую скорость движения вперед, такую, что общее количество движения рассматриваемой системы останется равным нулю, так как оно было нулем до начала движения.

Аналогичный эффект достигается действием весел или гребных колес.

в) Реактивное движение. В реактивном снаряде (ракете) газообразные продукты горения топлива с большой скоростью выбрасываются из отверстия в хвостовой части ракеты (из сопла реактивного двигателя). Действующие при этом силы давления бу­дут силами внутренними, и они не могут изменить суммарное коли­чество движения системы ракета - продукты горения топлива. Но так как вырывающиеся газы имеют известное количество движения, на­правленное назад, то ракета получает при этом соответствующую скорость движения вперед.

28)1)Приведение произвольной системы сил к заданному центру.

Основная теорема статики (теор. Пуансо):

При приведении системы сил к заданому центру возникает главный вектор R равный сумме всех сил и главный момент Мо, равный сумме моментов всех сил относительно центра приведения.

R=åFk

Lo=åMo(Fk)

        Пусть к твердому телу приложена плоская система сил .Возьмем в теле произвольную точку , ко­торую будем называть центром приведения, и приложим к ней по­парно уравновешенные силы  и . Заметим, что силы  и образуют при этом пару сил, так что можно считать силу  перенесенной параллельно самой себе в точку  - за­мененной силой  с присоединением пары . Посту­пив так и со всеми оставшимися силами, мы приведем заданную систему сил к совокупности пучка сил , приложенных в точке , и совокупности пар . Сходящиеся силы имеют равнодействующую , приложенную в точке  и равную векторной сумме всех сил системы. Эта сумма называется главным век­тором системы и обозначается .

          Пары можно заменить одной результирующей парой с моментом , равным алгебраической сумме их моментов. Так как момент пары равен сумме момен­тов входящих в нее сил относительно любой точки плоскости пары, то для каж­дой из складываемых пар

  .

Поэтому сумма моментов пар равна сумме моментов самих заданных сил отно­сительно точки , которая называется главным момен­том системы относи­тельно этой точки и обозначается . Та­ким образом, систему сил, произ­вольно расположенных на плоско­сти, можно заменить совокупностью одной силы , равной их главному вектору , и приложенной в произвольно выбран­ном центре приведения, и одной пары, момент которой  равен главному мо­менту  заданных сил относительно центра приве­дения. Это утверждение на­зывается теоремой Пуансо о приведении плоской системы сил к данному цен­тру.Главный вектор и главный момент системы опре­деляются по формулам:                                   

  ,

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]