
- •Что называют множеством, элементом множества?
- •Какие множества называются счётными (несчётными)?
- •Счётные множества - !Примеры!
- •Несчётные множества- !Примеры!
- •Какие способы задания множества Вам известны?
- •Дайте определение объединения множеств. Приведите пример. Поясните с помощью диаграмм Эйлера.
- •Объединение двух множеств
- •Объединение более чем двух множеств
- •Дайте определение разности множества. Приведите пример. Поясните с помощью диаграмм Эйлера.
- •Дайте определение дополнения множества. Приведите пример. Поясните с помощью диаграмм Эйлера.
- •Запишите формулу для нахождения числа элементов объединения двух (трёх) множеств
- •Какое событие называют случайным?
- •Что называют полной группой событий? Приведите примеры событий, образующих полную группу.
- •Какие исходы испытания называют элементарными?
- •Какие элементарные исходы называют благоприятствующими данному событию?
- •Сформулируйте классическое определение вероятности?
- •Укажите недостатки классического определения вероятности
- •Что изучает комбинаторика?
- •Назовите типы комбинаций, которые вам известны? Перечислительная комбинаторика
- •Структурная комбинаторика
- •Экстремальная комбинаторика
- •Теория Рамсея
- •Вероятностная комбинаторика
- •Топологическая комбинаторика
- •Что называют перестановками?
- •По какой формуле вычисляют число перестановок из n различных элементов?
- •Что называют размещениями? Запишите формулу, по которой вычисляют число размещений из n элементов по m.
- •Что называют сочетаниями? Запишите формулу, по которой вычисляют число сочетаний из n элементов по m.
- •По какой формуле вычисляется число перестановок из n элементов, если элементы повторяются?
- •Какой формулой определяется число размещений с повторениями из n элементов по m элементов?
- •Какой формулой определяется число сочетаний с повторениями из n элементов по m элементов?
- •Что называют суммой двух событий?
- •Что называют произведением двух событий?
- •Чему равна вероятность суммы двух несовместных событий?
- •Сформулируйте теорему сложения?
Укажите недостатки классического определения вероятности
Классическое определение вероятности не является пригодным для изучения произвольных случайных событий. Так, оно неприемлемо, если результаты испытания не равновозможные. Например, при бросании неправильной игральной кости выпадение ее различных граней не равновозможное.
Что изучает комбинаторика?
Комбинаторика или комбинаторный анализ - это раздел математики, посвященный решению задач выбора и расположения элементов некоторого, обычно конечного множества в соответствии с заданными правилами. Каждое такое правило определяет способ построения некоторой конфигурации из элементов исходного множества, называемой комбинаторной конфигурацией. Можно сказать, что целью комбинаторного анализа является изучение комбинаторных конфигураций, в частности вопросы их существования, алгоритмы построения, решение задач на перечисление. Примерами комбинаторных конфигураций являются перестановки, размещения и сочетания; блок-схемы и латинские квадраты.
Возникновение основных понятий и развитие комбинаторики шло параллельно с развитием других разделов математики (алгебры, теории чисел, теории вероятностей), с которыми комбинаторный анализ тесно связан. Математикам Древнего Востока были известны: формула, выражающая число сочетаний через биноминальные коэффициенты, и формула бинома Ньютона с натуральным показателем n. Рождение комбинаторного анализа как раздела математики связано с трудами Б. Паскаля и П. Ферми по теории азартных игр. Эти труды, составившие основу теории вероятностей, одновременно содержали принципы определения числа комбинаций элементов конечного множества.
Большой вклад в развитие комбинаторных методов был сделан Г. Лейбницем, Я. Бернулли, Л. Эйлером. С 50-ых годов интерес к комбинаторике возродился благодаря бурному развитию кибернетики, дискретной математики, теории планирования, информатике.
Назовите типы комбинаций, которые вам известны? Перечислительная комбинаторика
Перечислительная комбинаторика (или исчисляющая комбинаторика) рассматривает задачи о перечислении или подсчёте количества различных конфигураций (например, перестановок) образуемых элементами конечных множеств, на которые могут накладываться определённые ограничения, такие как: различимость или неразличимость элементов, возможность повторения одинаковых элементов и т. п.
Количество конфигураций, образованных несколькими манипуляциями над множеством, подсчитывается согласно правилам сложения и умножения.
Типичным примером задач данного раздела является подсчёт количества перестановок. Другой пример — известная Задача о письмах.
Структурная комбинаторика
К данному разделу относятся некоторые вопросы теории графов, а также теории матроидов.
Экстремальная комбинаторика
Примером этого раздела может служить следующая задача: какова наибольшая размерность графа, удовлетворяющего определённым свойствам.
Теория Рамсея
Основная статья: Теория Рамсея
Теория Рамсея изучает наличие регулярных структур в случайных конфигурациях элементов. Примером утверждения из теории Рамсея может служить следующее:
в группе из 6 человек всегда можно найти трёх человек, которые либо попарно знакомы друг с другом, либо попарно незнакомы.
В терминах структурной комбинаторики это же утверждение формулируется так:
в любом графе с 6 вершинами найдётся либо клика, либо независимое множество размера 3.