
- •Определители поля. Примеры поля комплексных чисел?
- •Алгебраическая запись комплексного числа. Операции над комплексными числами, их св-ва?
- •Сопряжения и его свойства?
- •4.Модуль и аргумент комплексного числа, их свойства. Тригонометрическая форма записи числа. Формула муравла.
- •Извлечение корня n-степени из комплексного числа?
- •6.Многочлены. Деление многочленов с остатком?
- •7.Теорема Декарта-Безу, схема Горнера. Пример
- •Доказательство
- •8. Рациональные корни многочлена с целыми коэффициентами. Пример. Основная теорема алгебры. Рациональные корни многочленов с целыми коэффициентами
- •Следствие
- •Действительная функция комплексного переменного f(X) непрерывная в замкнутом круге е достигает своего минимума и максимума.
- •Предположим, что это не верно тогда
- •9. Матрицы. Сложение матриц, умножение матриц на число, их свойства.
- •Умножение матрицы на число
- •Свойства умножения матрицы на число
- •10. Умножение матриц, свойства. Пример.
- •11. Транспонирование матриц, свойства. Обратная матрица и её свойства. Транспонирование матриц
- •Транспонирование матрицы
- •Обратная матрица
- •12.Элементарные преобразования строк и столбцов матриц, их матричная интерпретация.
- •18. Алгебраические дополнения элементов матрицы. Разложения определителя по строке.
- •23.Невырожденная матрица. Теорема о существовании обратной матрицы.
- •25. Пространство решений однородной слу. Фундаментальная система решений.
- •27.Структура множества решений слу. Способы решений. Методы решения систем линейных алгебраических уравнений
- •Постановка задачи
- •Правило Крамера
- •Условие совместности системы линейных уравнений
- •28. Пространство геометрических векторов. Операции с векторами и свойства.
- •29. Коллиниарность, комплонарность и линейная зависимость векторов.
- •Линейная зависимость векторов
- •30. Проекция вектора на ось, свойства.
- •31. Скалярное произведение. Критерий ортогональности векторов. Алгебраические свойства скалярного произведения. Скалярное произведение векторов
- •32. Ортонормированный базис. Выражение скалярного произведения через координаты векторов. Длина вектора и угол между ними. Пример.
- •Скалярное произведение векторов в ортонормированном базисе
- •Длина вектора Понятие вектора
- •33. Определение векторного и смешенного произведения векторов. Критерии комплонарности и колинеарности векторов в координатной форме. Площадь паралеограма и объём параллелепипеда.
- •34.Свойство векторного и смешенного произведения. Геометрические свойства векторного произведения Править
- •Алгебраические свойства векторного произведения Править
- •Выражение для векторного произведения в декартовых координатах Править
- •Свойства
- •35.Выражение векторного и смешенного произведения через координаты векторов.
- •8.4. Некоторые приложения смешанного произведения
- •36.Пдск. Координаты точки и координаты векторов. Преобразование координат при переходе к другой пдск.
- •Система координат и координаты вектора
- •37. Пск. Формулы перехода в пдск. Другие системы координат. Полярные координаты
- •[Править]Цилиндрические координаты
- •[Править]Сферические координаты
- •[Править]Обозначения, принятые в Америке
- •[Править]Европейские обозначения
- •38. Понятие об уравнении фигуры. Объединение пересечение фигур.
- •39. Уравнения примой на плоскости.
- •Уравнение прямой по точке и вектору нормали
- •Уравнение прямой, проходящей через две точки
- •Уравнение прямой по точке и угловому коэффициенту
- •Уравнение прямой по точке и направляющему вектору
- •Уравнение прямой в отрезках
- •Нормальное уравнение прямой
- •40. Уравнение плоскости.
- •41. Уравнение прямой в пространстве.
- •42. Угол между прямыми, плоскостями, прямой и плоскостью. Пример. Угол между прямыми на плоскости
- •Угол между плоскостями
- •43. Расстояние от точки до прямой, от точки до плоскости, между прямыми, между плоскостями. Пример. Расстояние от точки до прямой
- •Расстояние от точки до плоскости
- •44. Эллипс. Директрисы и оптические свойства гиперболы. Ллипс
- •46. Парабола. Парабола
- •47. Линейный оператор. Матрица линейного оператора.
- •48. Собственные числа, собственные векторы. Собственные числа и собственные векторы линейного оператора
- •49. Привидение в квп к каноническому виду.
- •50. Поверхности второго порядка. Метод сечений. Поверхности второго порядка
Определители поля. Примеры поля комплексных чисел?
Определение поля
Определение. Полем называется непустое множество, для элементов которого определено два действия, называемых сложением и умножением, которые удовлетворяют следующим аксиомам:
1.
(коммутативность
сложения);
2.
(ассоциативность
сложения);
3.
(существование
нуля);
4.
(существование
противоположного элемента);
5.
(коммутативность
умножения);
6.
(ассоциативность
умножения);
7.
(существование
единицы);
8.
(существование
обратного элемента);
9.
(дистрибутивность);
10.
(в
поле должно существовать хотя бы два
элемента).
Пример. Поля:
–
поле вещественных чисел,
–
поле рациональных чисел,
Некоторые следствия из аксиом поля
1. Нуль есть только один.
Действительно,
пусть есть два нуля
и
:
Тогда
и
.
2. У числа есть только одно противоположное.
Действительно,
пусть их два
и
.
Тогда
3.
.
Действительно,
.
4.
.
Действительно,
.
Аналогично
.
Значит,
.
Кроме того,
.
Тогда
и
.
Определение поля комплексных чисел
Определение. Полем
комплексных чисел называется множество
,
обладающее следующими свойствами:
1. — поле;
2.
(
содержит
).
При этом предполагается, что действия
в
в
применении к элементам из
приводят
к тем же результатам, что и действия
в
.
3. Любое квадратное уравнение с вещественными коэффициентами имеет в поле корень.
4. Каждый элемент поля является корнем какого-либо квадратного уравнения с вещественными коэффициентами.
Рассмотрим уравнение
Оно
не имеет вещественных корней, но, по
аксиоме 3, имеет корень в поле
.
Один из корней этого уравнения зафиксируем
и обозначим
(image)
— мнимая единица.
Пусть
Теорема. Любой
элемент поля
можно
единственным образом представить в
виде
,
где
.
Доказательство.
Пусть
—
произвольный элемент
.
По аксиоме 4,
—
корень квадратного уравнения с
коэффициентами из
Если
—
вещественное число, то его можно
представить в виде
.
Пусть
не
является вещественным числом. Тогда
квадратное уравнение
не
имеет вещественных корней и имеет
отрицательный дискриминант.
В
любом случае
имеет
требуемый вид.
Докажем единственность.
Предположим,
что
.
Тогда
Пусть
.
Тогда
Получаем,
что
.
Это невозможно, значит,
.
Тогда
.
Алгебраическая запись комплексного числа. Операции над комплексными числами, их св-ва?
Комплексные числа записываются в виде: a+ bi. Здесь a и b – действительные числа, а i – мнимая единица, т.e. i 2 = –1. Число a называется абсциссой, a b – ординатой комплексного числа a+ bi. Два комплексных числа a+ bi и a – bi называютсясопряжёнными комплексными числами.
Основные договорённости:
1. Действительное число а может быть также записано в форме комплексного числа: a+ 0 i или a – 0 i. Например, записи 5 + 0 i и 5 – 0 i означают одно и то же число 5 .
2. Комплексное число 0+ bi называется чисто мнимым числом. Запись bi означает то же самое, что и 0+ bi.
3. Два комплексных числа a+ bi и c+ di считаются равными, если a= c и b= d. В противном случае комплексные числа не равны.
Сложение. Суммой комплексных чисел a+ bi и c+ di называется комплексное число ( a+ c ) + ( b+ d ) i. Таким образом, при сложении комплексных чисел отдельно складываются их абсциссы и ординаты.
Это определение соответствует правилам действий с обычными многочленами.
Вычитание. Разностью двух комплексных чисел a+ bi (уменьшаемое) и c+ di (вычитаемое) называется комплексное число ( a – c ) + ( b – d ) i.
Таким образом, при вычитании двух комплексных чисел отдельно вычитаются их абсциссы и ординаты.
Умножение. Произведением комплексных чисел a+ bi и c+ di называется комплексное число:
( ac – bd ) + ( ad + bc ) i . Это определение вытекает из двух требований:
1) числа a+ bi и c+ di должны перемножаться, как алгебраические двучлены,
2) число i обладает основным свойством: i 2 = –1.
П р и м е р . ( a+ bi )( a – bi )= a 2 + b 2. Следовательно, произведение
двух сопряжённых комплексных чисел равно действительному
положительному числу.
Деление. Разделить комплексное число a+ bi (делимое) на другое c+ di (делитель) - значит найти третье число e+ f i (чатное), которое будучи умноженным на делитель c+ di, даёт в результате делимое a+ bi.
Если делитель не равен нулю, деление всегда возможно.
П р и м е р . Найти ( 8 + i ) : ( 2 – 3i ) .
Р е ш
е н и е . Перепишем это отношение в виде
дроби:
Умножив её числитель и знаменатель на 2 + 3i
и выполнив все преобразования, получим: