Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
клетка - единица жизнедеятельности организмов.docx
Скачиваний:
2
Добавлен:
16.04.2019
Размер:
71.43 Кб
Скачать

Клетка – единица жизнедеятельности организмов

1 Курс егф озо

Калинина Маргарита

Клетка — элементарная единица строения и жизнедеятельности всех живых организмов (кроме вирусов, о которых нередко говорят как о неклеточных формах жизни), обладающая собственным обменом веществ, способная к самостоятельному существованию, самовоспроизведению и развитию. Все живые организмы либо, как многоклеточные животные, растения и грибы, состоят из множества клеток, либо, как многие простейшие и бактерии, являются одноклеточными организмами. Раздел биологии, занимающийся изучением строения и жизнедеятельности клеток, получил название цитологии. В последнее время принято также говорить о биологии клетки, или клеточной биологии.

По способу получения энергии все организмы делятся на две группы – автотрофные и гетеротрофные.

Организмы, неспособные сами синтезировать органические соединения из неорганических, нуждаются в доставке их из окружающей среды. Такие организмы называют гетеротрофами. К ним относятся большинство бактерий, грибы и все животные. Животные поедают других животных и растения и получают с пищей готовые углеводы, жиры и нуклеиновые кислоты. В ходе жизнедеятельности происходит расщепляется этих веществ. Из части освободившихся при этом молекул – глюкозы, аминокислот, нуклеотидов и др. синтезируются более сложные органические соединения, свойственные данному организму, - гликоген, жиры, белки, нуклеиновые кислоты. Другая часть молекул расщепляется, и освобождающаяся при этом энергия используется для жизнедеятельности.

Автотрофы– это организмы, осуществляющие питание (т. е. получающие энергию) за счёт неорганических соединений. К ним относятся некоторые бактерии и все зелёные растения. В зависимости от того, какой источник энергии используется автотрофными организмами для синтеза органических соединений, их делят на две группы: фототрофы и хемотрофы. Для фототрофоф источником энергии служит свет, а хемотрофы используют энергию, освобождающуюся при окислительно-восстановительных реакциях. Зелёные растения являются фототрофами. При помощи содержащегося в хлорофилла они осуществляют фотосинтез – преобразование световой энергии в энергию химических связей.

Фотосинтезом называется образование органических (и неорганических)молекул из неорганических за счёт использования энергии солнечного света. Этот процесс состоит из двух фаз – световой и темновой.

В световой фазе кванты света – фотоны – взаимодействуют с молекулами хлопрофилла, в результате чего эти молекулы на очень короткое время переходят в более богатое энергией «возбуждённое» состояние. Затем избыточная энергия части возбуждённых молекул преобразуется в теплоту или испускается в виде света. Другая её часть передаётся ионам водорода Н+, всегда имеющимисяв водном растворе вследствие диссоциации воды.

Н2О = Н+ + ОН-

Образовавшиеся атомы водорода (Н0) непрочно соединяются с органическими молекулами – переносчиками водорода. Ионы гидроксила ОН отдают свои электроны другим молекулам и превращаются в свободные радикалы ОН0. Радикалы ОН0 взаимодействуют друг с другом, в результате чего образуются вода и молекулярный кислород:

4ОН = О2 + 2 Н2О

Таким образом, источником энергии молекулярного кислорода, образующегося в процессе фотосинтеза и выделяющегося в атмосферу, является вода, расщепляющаяся в результате фотолиза – разложение воды под влиянием света. Кроме фотолиза воды энергия света используется в световой фазе для синтеза АТФ из АДФ и фосфата без участия кислорода.

Это очень эффективный процесс: в хлоропластах образуется в 30 раз больше АТФ, чем в митохондриях тех же растений с участием кислорода. Таким путём накапливается энергия, необходимая для процессов, происходящих в темновой фазе.

В комплексе химических реакций темновой фазы, для течения которых свет не обязателен, ключевое место занимает связывание СО2. В этих реакциях участвуют молекулы АТФ, синтезированные во время световой фазы, и атомы водорода, образовавшиеся в процессе фотолиза воды и связанные с молекулами-переносчиками:

3СО2 + 24Н0 = С6Н12О6 + 6Н2О

Так энергия солнечного света преобразуется в энергию химических связей сложных органических соединений.

Очевидно, что роль растений и иных фотосинтезирующих организмов в развитии и поддержании жизни на нашей планете исключительно велика: они превращают энергию солнечного света в энергию химических связей органических соединений, которая далее используется всеми остальными живыми существами; они насыщают атмосферу Земли кислородом, который служит для окисления органических веществ и извлечения таким способом запасенной в них химической энергии аэробными клетками; наконец, определённые виды растений в симбиозе с азотфиксирующими бактериями вводят газообразный азот атмосферы в состав молекул аммиака. Его солей и органических азотсодержащих соединений.

Некоторые бактерии, лишённые хлорофилла, тоже способны к синтезу органических соединений, при этом они используют энергию химических реакций неорганических веществ. Преобразование энергии химических реакций в химическую энергию синтезируемых органических соединений называют хемосинтезом.

Хемосинтез был открыт видным русским микробиологом

С.Н. Виноградским.

К группе авторов-хемосинтетиков относятся нитрифицирующие бактерии. Некоторые из них используют энергию окисления аммиака в азотистую кислоту, другие – энергию окисления азотистой кислоты в азотную. Известны хемосинтетики, извлекающие энергию из окисления двухвалентного железа в трёхвалентное или из окисления сероводорода до серной кислоты. Фиксируя атмосферный азот, переводя нерастворимые минералы в форму, пригодную для усвоения растениями, хемосинтезирующие бактерии играют важную роль в круговороте веществ в природе. Автотрофами-хемосинтетиками являются, например, и так называемые «железные бактерии», и «серные бактерии». Первые из них используют энергию, выделяющуюся при окислении двухвалентного железа в трёхвалентное; вторые окисляют сероводород до серной кислоты.

Способностью к хемосинтезу обладают только некоторые виды бактерий. Роль их в природе колоссальна. Они не «производят» атмосферный кислород, не накапливают больших количеств органического вещества. Однако химические реакции, которые они используют в ходе своей жизнедеятельности, играют ключевую роль в биогеохимии, обеспечивая, в том числе, круговорот азота, серы и других элементов в природе.

При расщеплении высокомолекулярных соединений выделяется энергия, необходимая для реакции биосинтеза. Поэтому этот процесс называют диссимиляцией или энергетическим обменом или катаболизмом. Химическая энергия питательных веществ заключена в различных ковалентных связях между атомами в молекулах органических соединений.

Часть энергии, освобождаемой из питательных веществ, рассеивается в форме теплоты, а часть аккумулируется, т. е. накапливается в богатых энергией фосфатных связях АТФ.

Молекула АТФ состоит из азотистого основания аденина, сахара рибозы и трёх остатков фосфорной кислоты.

Благодаря богатым энергией связям в молекулах АТФ клетка может накапливать большое количество энергии в очень небольшом пространстве и расходовать её по мере надобности. Синтез АТФ осуществляется в митохондриях. Отсюда молекулы АТФ поступают в разные участки клетки, обеспечивая энергией процессы жизнедеятельности.

Энергетический обмен обычно делят на три этапа.

Первый этап — подготовительный. В желудочно-кишечном тракте многоклеточных организмов он осуществляется пищеварительными ферментами. У одноклеточных — ферментами лизосом. На первом этапе происходит расщепление белков до аминокислот, жиров до глицерина и жирных кислот, полисахаридов до моносахаридов, нуклеиновых кислот до нуклеотидов. Этот процесс называют пищеварением. На этом этапе выделяется небольшое количество энергии, которая рассеивается в виде теплоты.

Второй этап — бескислородный или неполный. Он называется также анаэробным дыханием (гликолизом) или брожением. Происходит в цитоплазме клеток. Главным источником энергии в клетке является глюкоза. Он состоит из ряда последовательных реакций по превращению глюкозы в лактат. Его присутствие в мышцах хорошо известно уставшим спортсменам.

В ходе гликолиза образуется большое количество энергии, часть которой рассеивается в виде тепла, а часть используется на синтез АТФ.

Суммарное уравнение реакций гликолиза выглядит следующим образом:

С6Н12О6 + 2 Н3РО4 + 2 АДФ = 2С3Н6О3 + 2АТФ + 2Н2О

У дрожжевых грибов молекула глюкозы без участия кислорода превращается в этиловый спирт и диоксид углерода:

С6Н12О6 + 2Н3РО4 + 2АДФ = 2С2Н5ОН + 2СО2 + 2АТФ + 2Н2О

У других микроорганизмов гликолиз может завершаться образованием ацетона, уксусной кислоты и т. д.

Во всех случаях распад одной молекулы глюкозы сопровождается образованием двух молекул АТФ. В ходе бескислородного расщепления глюкозы в виде химической связи в молекуле АТФ сохраняется 40% энергии, а остальная рассеивается в виде теплоты.

Третий этап энергетического обмена – стадия аэробного дыхания или кислородного расщепления. Реакции этой стадии энергетического обмена также катализируются ферментами. При доступе кислорода к клетке образовавшиеся во время предыдущего этапа вещества окисляются до конечных продуктов – Н2О и СО2. Кислородное дыхание сопровождается выделением большого количества энергии и аккумуляцией её в молекулах АТФ. Суммарное уравнение аэробного дыхания выглядит так:

2 С3Н6О3 + 6О2 + 36Н3РО4 + 36АДФ = 6СО2 + 38Н2О + 36АТФ

Таким образом, при окислении двух молекул молочной кислоты образуются 36 молекул АТФ. Следовательно, основную роль в обеспечении клетки играет аэробное дыхание.

Морфология хромосом лучше всего видна в клетке на стадии метафазы. Хромосома состоит из двух палочкообразных телец - хроматид. Обе хроматиды каждой хромосомы идентичны друг другу по генному составу.

Хромосомы дифференцированы по длине. Хромосомы имеют центромеру или первичную перетяжку, две теломеры и два плеча. На некоторых хромосомах выделяют вторичные перетяжки и спутники. Движение хромосомы определяет Центромера, которая имеет сложное строение. ДНК центромеры отличается характерной последовательностью нуклеотидов и специфическими белками. В зависимости от расположения центромеры различают акроцентрические, субметацентрические и метацентрические хромосомы. Некоторые хромосомы имеют вторичные перетяжки. Они, в отличие от первичной перетяжки (центромеры), не служат местом прикрепления нитей веретена и не играют никакой роли в движении хромосом. Некоторые вторичные перетяжки связаны с образованием ядрышек, в этом случае их называют ядрышковыми организаторами. В ядрышковых организаторах расположены гены, ответственные за синтез РНК. Функция других вторичных перетяжек еще не ясна. У некоторых акроцентрических хромосом есть спутники — участки, соединенные с остальной частью хромосомы тонкой нитью хроматина. Форма и размеры спутника постоянны для данной хромосомы. У человека спутники имеются у пяти пар хромосом. Концевые участки хромосом, богатые структурным гетерохроматином, называются теломерами. Теломеры препятствуют слипанию концов хромосом после редупликации и тем самым способствуют сохранению их целостности. Следовательно, теломеры ответственны за существование хромосом как индивидуальных образований. Хромосомы, имеющие одинаковый порядок генов, называют гомологичными. Они имеют одинаковое строение (длина, расположение центромеры и т. д.). Негомологичные хромосомы имеют разный генный набор и разное строение. Исследование тонкой структуры хромосом показало, что они состоят из ДНК, белка и небольшого количества РНК. Молекула ДНК несет отрицательные заряды, распределенные по всей длине, а присоединенные к ней белки — гистоны заряжены положительно. Этот комплекс ДНК с белком называют хроматином. Хроматин может иметь разную степень конденсации. Конденсированный хроматин называют гетерохроматином, деконденсированный хроматин — эухроматином. Степень деконденсации хроматина отражает его функциональное состояние. Гетерохроматиновые участки функционально менее активны, чем эухроматиновые, в которых локализована большая часть генов. Различают структурный гетерохроматин, количество, которого различается в разных хромосомах, но располагается он постоянно в околоцентромерных районах. Кроме структурного гетерохроматина существует факультативный гетерохроматин, который появляется в хромосоме при сверхспирализации эухроматических районов. Подтверждением существования этого явления в хромосомах человека служит факт генетической инактивации одной Х-хромосомы в соматических клетках женщины. Его суть заключается в том, что существует эволюционно сформировавшийся механизм инактивации второй дозы генов, локализованных в Х-хромосоме, вследствие чего, несмотря на разное число Х-хромосом в мужском и женском организмах, число функционирующих в них генов уравнено. Максимально конденсирован хроматин во время митотического деления клеток, тогда его можно обнаружить в виде плотных хромосом Размеры молекул ДНК хромосом огромны. Каждая хромосома представлена одной молекулой ДНК. Они могут достигать сотен микрометров и даже сантиметров. Из хромосом человека самая большая — первая; ее ДНК имеет общую длину до 7 см. Суммарная длина молекул ДНК всех хромосом одной клетки человека составляет 170 см. Несмотря на гигантские размеры молекул ДНК, она достаточно плотно упакована в хромосомах. Такую специфическую укладку хромосомной ДНК обеспечивают белки гистоны. Гистоны располагаются по длине молекулы ДНК в виде блоков. В один блок входит 8 молекул гистонов, образуя нуклеосому (образование, состоящее из нити ДНК, намотанной вокруг октамера гистонов). Размер нуклеосомы около 10 нм. Нуклеосомы имеют вид нанизанных на нитку бусинок. Нуклеосомы и соединяющие их участки ДНК плотно упакованы в виде спирали, на каждый виток такой спирали приходится шесть нуклеосом. Так формируется структура хромосомы. Наследственная информация организма строго упорядочена по отдельным хромосомам. Каждый организм характеризуется определенным набором хромосом (число, размеры и структура), который называется кариотипом. Кариотип человека представлен двадцатью четырьмя разными хромосомами (22 пары аутосом, Х- и Y-хромосомы). Кариотип — это паспорт вида. Анализ кариотипа позволяет выявлять нарушения, которые могут приводить к аномалиям развития, наследственным болезням или гибели плодов и эмбрионов на ранних стадиях развития. Длительное время полагали, что кариотип человека состоит из 48 хромосом. Однако в начале 1956 г. было опубликовано сообщение, согласно которому число хромосом в кариотипе человека равно 46. Хромосомы человека различаются по размеру, расположению центромеры и вторичных перетяжек. Впервые подразделение кариотипа на группы было проведено в 1960 г. на конференции в г. Денвере (США). В описание кариотипа человека первоначально были заложены два следующих принципа: расположение хромосом по их длине; группировка хромосом по расположению центромеры (метацентрические, субметацентрические, акроцентрические). Точное постоянство числа хромосом, их индивидуальность и сложность строения свидетельствуют о важности выполняемой ими функции. Хромосомы выполняют функцию основного генетического аппарата клетки. В них в линейном порядке расположены гены, каждый из которых занимает строго определенное место (локус) в хромосоме. В каждой хромосоме много генов, но для нормального развития организма необходим набор генов полного хромосомного набора.

Способность к делению – важнейшее свойство клеток. Без деления невозможно представить себе увеличение числа одноклеточных существ, развитие многоклеточного организма из оплодотворённой яйцеклетки, возобновление клеток, тканей и даже органов, утраченных в процессе жизнедеятельности организма.

Половое размножение животных, растений и грибов тесно связано с формированием специализированных половых клеток – гамет, которые при оплодотворении сливаются, объединяя свои ядра. Естественно, что при этом в зиготе оказывается в два раза больше хромосом, чем в каждой из гамет. Такой же двойной набор хромосом будут иметь и клетки всего организма, выросшего из зиготы. Неполовые, соматические, клетки большинства многоклеточных организмов имеют двойной, диплоидный, (2n), набор хромосом, где каждая хромосома имеет парную, гомологичную, хромосому.

В некотором смысле соматические клетки нужны только для того, чтобы способствовать выживанию и размножению половых клеток.[1]

Способы обмена генетической информацией между соматическими клетками:

  1. Трансформация — это генотипическое изменение какого-либо бактериального штамма в результате поглощения ДНК бактерийдругого штамма. Происходит ли трансформация соматических клеток в организме, пока остается неясным. Многие исследователи считают, что это вполне возможно.

  2. Трансдукция — генетические изменения бактериальных клеток при передаче им инфицирующими их бактериофагамиотдельных частей хромосом бактерий других штаммов.

  3. Гибридизация — перенос ядерных генов от одной клетки к другой, а также совмещения геномов двух клеток в одной с воспроизведением их в последующих клеточных поколениях. Пока нет оснований утверждать, что такая гибридизация происходит внутри целостного организма, но нет оснований и для отрицания этого.

  4. В последнее время в ряде стран были произведены операции по пересадке органов у человека, но в большинстве случаев они оказываются неудачными в связи с тканевой несовместимостью, и преодолеть этот барьер пока не удается. Лишь точные знания наследственной детерминации совместимости и несовместимости помогут решить эту важную проблему. Для этого необходимы комплексные цитогенетические и иммунологические исследования.

ПОЛОВЫЕ КЛЕТКИ

По сравнению с другими клетками функция гамет уникальна. Они обеспечивают передачу наследственной информации между особями разных поколений, чем сохраняют жизнь во времени.

В сравнении с другими линиями соматических клеток (эпителиальные, нервные, мышечные) гаметы характеризуются рядом отличий. Важнейшее из них — гаплоидный набор хромосом в ядрах, что обеспечивает воспроизведение в зиготе типичного для организмов данного вида диплоидного числа хромосом.

Действительно, оплодотворение сперматозоидом яйцеклетки, ядра которых содержат по 23 хромосомы, обусловливает формирование зиготы с 46 хромосомами, что типично для соматических клеток человека. Гаметы отличаются необычным для других клеток значениемядерно-цитоплазматического отношения. У яйцеклеток оно снижено благодаря увеличенному объему цитоплазмы, в которой размещен питательный материал (желток) для развития зародыша. У сперматозоидов благодаря малому количеству цитоплазмы ядерно-цитоплазматическое отношение высокое. Это находится в соответствии с главной функциональной задачей мужской гаметы — транспортировкой наследственного материала к яйцеклетке.

Соматические и половые клетки

  1. Соматические и половые клетки имеют общее происхождение, так как образуются из генетически одинаковых эмбриональных клеток, которые содержат всю генетическую информацию, необходимую для образования клеток различных типов в ходе развития организма.

  2. У соматических клеток возникают все виды мутаций,(в т. ч. под действием различных излучений) характерные и для половых клеток

  3. Частоты мутирования в половых и соматических клетках существенно не различаются.

Хромосомы (греч. chrōma цвет, окраска + sōma тело) — основные структурно-функциональные элементы клеточного ядра, содержащие гены. Название «хромосомы» обусловлено их способностью интенсивно окрашиваться основными красителями во время деления клетки. Каждый биологический вид характеризуется постоянством числа, размеров и других морфологических признаков X. 

Число хромосом и их структура у разных живых организмов весьма сильно отличаются, колеблясь от 4 до 500 хромосом в каждой клетке. В клетке шимпанзе и горилл 48 хромосом. В 1956 г. было установлено, что в каждой клетке человека (исключая сперматозоиды и яйцеклетки) содержится 46 хромосом, а не 48, как первоначально думали. Хромосомы в клетке можно наблюдать в микроскоп и фотографировать. Каждую хромосому можно вырезать, наклеить на картон, расположив по порядку, начиная с самых больших по размеру. 22 пары хромосом 1 (всего 44) располагают в порядке убывания их длины. В каждой паре одна хромосома отцовская, другая — материнская.

Оставшиеся две хромосомы в каждой клетке называются половыми, поскольку они содержат информацию, определяющую пол будущего индивида. Каждый родитель передает своему потомку только одну из половых хромосом. Половые хромосомы женщин обозначаются символом XX, а мужчин — XY. Если зародыш, получивший от жен-шины одну Х-хромосому, получит от мужчины также Х-хромосому, то родится девочка (XX). Если же мужчина передает зародышу Y-хромосому, то комбинация ее с женской хромосомой (X) приводит к рождению мальчика (XY). Присутствие хромосомы Y всегда определяет мужской пол новорожденного (даже при хромосомных нарушениях, когда наряду с Y-хромосомой в клетках присутствуют две или более Х-хромосомы).