
- •Новая классификация форм механического движения
- •Первый закон Ньютона
- •Современная формулировка
- •Историческая формулировка
- •Второй закон Ньютона
- •Третий закон Ньютона
- •Современная формулировка
- •Историческая формулировка
- •Реактивное движение
- •Мощность в механике
- •Поля физические
- •Электромагнитная концепция
- •Классификация
- •По характеру взаимодействия с окружающей средой
- •Классификации волн
- •Влияние субстанции
- •По математическому описанию
- •Шкала электромагнитных волн
- •Общие свойства волн Резонансные явления
- •Распространение в однородных средах
- •Дисперсия
- •Поляризация
- •Взаимодействие с телами и границами раздела сред
- •Наложение волн
- •Постулаты
- •Основные характеристики
- •Диссипативная самоорганизация (синергетический подход)
- •Функции состояния
- •Формулировка
- •Формулировки
- •Основные квантовые числа
- •Типы связи
- •Роль катализатора в химической реакции
- •Значение периодической системы
- •Законы стехиометрии
- •История исследования
- •Клеточный уровень
- •Функции белков в организме
- •Каталитическая функция
- •Структурная функция
- •Защитная функция
- •Регуляторная функция
- •Сигнальная функция
- •Транспортная функция
- •Запасная (резервная) функция белков
- •Рецепторная функция
- •Моторная (двигательная) функция
- •Средневековье и возрождение
- •Эволюционные идеи Нового времени
- •Теория Ламарка
- •Катастрофизм и трансформизм
- •Эволюционисты — современники Дарвина
- •Современные теории биологической эволюции
- •Синтетическая теория эволюции
- •Нейтральная теория молекулярной эволюции
- •Катастрофизм
- •Труды Дарвина
- •Закон единообразия гибридов первого поколения
- •Кодоминирование и неполное доминирование
- •Закон расщепления признаков Определение
- •Объяснение
- •Закон независимого наследования признаков Определение
- •Объяснение
- •Генетика пола
- •Определение пола
- •Наследование признаков, сцепленных с полом
- •Сцепленное наследование
- •Понятие о генетической карте
- •Основные положения хромосомной теории наследственности
- •Фундаментальный смысл энергии
- •Энергия и работа
- •Виды энергии
- •Единицы измерения
- •Мощность в механике
- •Электрическая мощность
- •Неразветвленные и разветвленные электрические цепи
- •Методы расчета цепей
- •Закон Ома
- •Законы Кирхгофа
- •Активная мощность
- •Реактивная мощность
- •Полная мощность
- •Преимущества
- •Недостатки
- •Степень интеграции
Полная мощность
Полная
мощность — величина, равная произведению
действующих значений периодического
электрического тока I в цепи и
напряжения U на её зажимах: S = U×I;
связана с активной и реактивной мощностями
соотношением:
,
где Р — активная мощность, Q —
реактивная мощность (при индуктивной
нагрузке Q > 0, а при ёмкостной Q <
0). Единица полной электрической
мощности — вольт-ампер
(V*A, В*А).
Векторная
зависимость между полной, активной и
реактивной мощностью выражается
формулой:
Коэффициент мощности — безразмерная физическая величина, являющаяся энергетической характеристикой электрического тока. Коэффициент мощности характеризует приёмник электроэнергии переменного тока, а именно — степень линейности нагрузки. Равен отношению потребляемой электроприёмником активной мощности к полной мощности. Активная мощность расходуется на совершение работы. Полная мощность — геометрическая сумма активной и реактивной мощностей (в случае синусоидальных тока и напряжения). В общем случае полную мощность можно определить как произведение действующих (среднеквадратических) значений тока и напряжения в цепи. Полная мощность равна корню квадратному из суммы квадратов активной и неактивной мощностей. В качестве единицы измерения полной мощности принято использовать вольт-ампер (В∙А) вместо ватта (Вт).
Согласно неравенству Коши—Буняковского, активная мощность, равная среднему значению произведения тока и напряжения, всегда не превышает произведение соответствующих среднеквадратических значений. Поэтому коэффициент мощности принимает значения от нуля до единицы (то есть от 0 до 100 %).
Коэффициент мощности математически можно интерпретировать как косинус угла между векторами тока и напряжения. Поэтому в случае синусоидальных напряжения и тока величина коэффициента мощности совпадает с косинусом угла, на который отстают соответствующие фазы.
В электроэнергетике для коэффициента мощности приняты обозначения cos φ (где φ — сдвиг фаз между силой тока и напряжением) либо λ. Когда для обозначения коэффициента мощности используется λ, его величину обычно выражают в процентах.
При наличии реактивной составляющей в нагрузке кроме значения коэффициента мощности иногда также указывают характер нагрузки: активно-ёмкостный или активно-индуктивный. В этом случае коэффициент мощности соответственно называют опережающим или отстающим.
В случае синусоидального напряжения, если нагрузка не имеет реактивной составляющей, коэффициент мощности равен доле мощности первой гармоники тока в полной мощности, потребляемой нагрузкой, и равен коэффициенту искажений тока.
Цифровые технологии , организация систем управления на интегральных микросхемах.
Цифровые технологии (англ. Digital technology) основаны на представлении сигналов дискретными полосами аналоговых уровней, а не в виде непрерывного спектра. Все уровни в пределах полосы представляют собой одинаковое состояние сигнала.
Цифровая технология работает, в отличие от аналоговой, с дискретными, а не непрерывными сигналами. Кроме того, сигналы имеют небольшой набор значений, как правило, два. Обычно это 0 и 1, которые в булевской алгебре имеют значения «Ложь» и «Истина» соответственно.
Цифровые схемы состоят в основном из логических элементов, таких как AND, OR, NOT и др., а также могут быть связаны между собой счетчиками и триггерами.
Цифровые технологии главным образом используются в вычислительной цифровой электронике, прежде всего компьютерах, в различных областях электротехники, таких как игровые автоматы, робототехника, автоматизация, измерительные приборы, радио- и телекоммуникационные устройства и многих других цифровых устройствах.