
- •Новая классификация форм механического движения
- •Первый закон Ньютона
- •Современная формулировка
- •Историческая формулировка
- •Второй закон Ньютона
- •Третий закон Ньютона
- •Современная формулировка
- •Историческая формулировка
- •Реактивное движение
- •Мощность в механике
- •Поля физические
- •Электромагнитная концепция
- •Классификация
- •По характеру взаимодействия с окружающей средой
- •Классификации волн
- •Влияние субстанции
- •По математическому описанию
- •Шкала электромагнитных волн
- •Общие свойства волн Резонансные явления
- •Распространение в однородных средах
- •Дисперсия
- •Поляризация
- •Взаимодействие с телами и границами раздела сред
- •Наложение волн
- •Постулаты
- •Основные характеристики
- •Диссипативная самоорганизация (синергетический подход)
- •Функции состояния
- •Формулировка
- •Формулировки
- •Основные квантовые числа
- •Типы связи
- •Роль катализатора в химической реакции
- •Значение периодической системы
- •Законы стехиометрии
- •История исследования
- •Клеточный уровень
- •Функции белков в организме
- •Каталитическая функция
- •Структурная функция
- •Защитная функция
- •Регуляторная функция
- •Сигнальная функция
- •Транспортная функция
- •Запасная (резервная) функция белков
- •Рецепторная функция
- •Моторная (двигательная) функция
- •Средневековье и возрождение
- •Эволюционные идеи Нового времени
- •Теория Ламарка
- •Катастрофизм и трансформизм
- •Эволюционисты — современники Дарвина
- •Современные теории биологической эволюции
- •Синтетическая теория эволюции
- •Нейтральная теория молекулярной эволюции
- •Катастрофизм
- •Труды Дарвина
- •Закон единообразия гибридов первого поколения
- •Кодоминирование и неполное доминирование
- •Закон расщепления признаков Определение
- •Объяснение
- •Закон независимого наследования признаков Определение
- •Объяснение
- •Генетика пола
- •Определение пола
- •Наследование признаков, сцепленных с полом
- •Сцепленное наследование
- •Понятие о генетической карте
- •Основные положения хромосомной теории наследственности
- •Фундаментальный смысл энергии
- •Энергия и работа
- •Виды энергии
- •Единицы измерения
- •Мощность в механике
- •Электрическая мощность
- •Неразветвленные и разветвленные электрические цепи
- •Методы расчета цепей
- •Закон Ома
- •Законы Кирхгофа
- •Активная мощность
- •Реактивная мощность
- •Полная мощность
- •Преимущества
- •Недостатки
- •Степень интеграции
Значение периодической системы
Периодическая система Д. И. Менделеева стала важнейшей вехой в развитии атомно-молекулярного учения. Благодаря ей сложилось современное понятие о химическом элементе, были уточнены представления о простых веществах и соединениях.
Прогнозирующая роль периодической системы, показанная ещё самим Менделеевым, в XX веке проявилась в оценке химических свойств трансурановых элементов.
Разработанная в XIX в. в рамках науки химии, периодическая таблица явилась готовой систематизацией типов атомов для новых разделов физики, получивших развитие в начале XX в. — физики атома и физики ядра. В ходе исследований атома методами физики было установлено, что порядковый номер элемента в таблице Менделеева (атомный номер) является мерой электрического заряда атомного ядра этого элемента, номер горизонтального ряда (периода) в таблице определяет число электронных оболочек атома, а номер вертикального ряда — квантовую структуру верхней оболочки, чему элементы этого ряда и обязаны сходством химических свойств.
Появление периодической системы открыло новую, подлинно научную эру в истории химии и ряде смежных наук — взамен разрозненных сведений об элементах и соединениях появилась стройная система, на основе которой стало возможным обобщать, делать выводы, предвидеть.
Ученье о составе вещества . Основные стехиометрические законы .
Учение о составе вещества
Первое научное определение химического элемента, когдаещё не было открыто ни одного из них, сформулировал английский химик и физик Р. Бойль. Первым был открыт химический элемент фосфор в 1669 г., потом кобальт, никель и другие. Открытие французским химиком А.Л. Лавуазье кислорода и установление его роли в образовании различных химических соединений позволило отказаться от прежних представлений об “огненной материи” (флогистоне). Лавуазье впервые систематизировал химические элементы на базе имевшихся в XVIII в. знаний. Эта систематизация оказалась ошибочной и в дальнейшем была усовершенствована Д.И. Менделеевым. Система Лавуазье определяла место элемента по атомной массе. В настоящее время место химического элемента определяют по заряду атомного ядра, который отражает индивидуальные свойства элемента. Например, элемент хлор имеет два изотопа (две разновидности), отличающиеся друг от друга по массе атома. Но оба они относятся к одному химическому элементу - хлору из –за одинакового заряда их ядер.
В периодической системе Д.И. Менделеева насчитывалось 62 элемента, в 1930 – е гг. она заканчивалась ураном ( Z = 92 ). В 1999г. было сообщено, что путём физического синтеза атомных ядер открыт 114 - й элемент.
В результате химических и физических открытий претерпело изменение классическое определение молекулы. Молекула понимается как наименьшая частица вещества, которая в состоянии определять его свойства и в то же время может существовать самостоятельно. Представления о классе молекул расширились, в него включают ионные системы, атомные и металлические монокристаллы и полимеры, образующиеся на основе водородных связей и представляющие собой уже макромолекулы. Они обладают молекулярным строением, хотя и не находятся в строго постоянном составе. На основе современных достижений химии появилась возможность замены металлов керамикой не только как более экономичным продуктом, но и во многих случаях и как более подходящим конструкционным материалом по сравнению с металлом. Более низкая плотность керамики (40%) даёт возможность снизить массу изготовляемых из неё предметов. Включение в производство керамики новых химических элементов: титана, бора, хрома, вольфрама и других позволяет получать материалы с заранее заданными специальными свойствами (огнеупорность, термостойкость, высокая твёрдость и т.д.)