
- •Экзаменационный билет № 1
- •Общие представления о теориях строения дэс. Уравнение Пуассона-Больцмана для диффузной части дэс и его решение для случая слабозаряженных поверхностей. Уравнение Гуи-Чепмена.
- •Экзаменационный билет № 2
- •Механизмы образования дэс. Соотношение между электрическим потенциалом и поверхностным натяжением (уравнение Липпмана). Электрокапиллярные кривые и определение параметров дэс.
- •В таблице приведены данные по адсорбции паров воды макропористым адсорбентом при комнатой температуре. Пользуясь уравнением Ленгмюра определите емкость адсорбционного монослоя:
- •Экзаменационный билет № 3
- •Современная теория строения дэс (теория Штерна); роль специфической адсорбции, перезарядка поверхности. Примеры образования дэс. Строение мицеллы.
- •Адгезия и смачивание, определения. Уравнение Дюпре для работы адгезии. Угол смачивания и уравнение Юнга. Уравнение Дюпре-Юнга для работы адгезии. Влияние пав на адгезию и смачивание.
- •Экзаменационный билет № 5
- •Правило фаз Гиббса и дисперсность. Влияние кривизны поверхности (дисперсности) на внутреннее давление тел (вывод и анализ уравнения Лапласа). Капиллярные явления (уравнение Жюрена).
- •Вывод уравнения для скорости осаждения частиц в гравитационном поле. Условия соблюдения закона Стокса. Седиментационный анализ, расчет и назначение кривых распределения частиц по размерам.
- •Экзаменационный билет № 6
- •Экзаменационный билет № 7
- •Седиментационно-диффузионное равновесие (гипсометрический закон). Вывод уравнения. Мера седиментационной устойчивости. Факторы, влияющие на седиментационную устойчивость дисперсных систем.
- •Экзаменационный билет № 8
- •Экзаменационный билет № 9
- •Мономолекулярная адсорбция, форма изотермы адсорбции. Уравнение Генри. Основные положения теории Ленгмюра.
- •Лиофильные дисперсные системы. Классификация и общая характеристика пав. Термодинамика и механизм мицеллообразования. Строение мицелл пав в водных и углеводородных средах. Солюбилизация.
- •Экзаменационный билет № 10
- •Лиофильные дисперсные системы. Истинно растворимые и коллоидные пав, их классификация. Мицеллообразование, строение мицелл, методы определения ккм. Факторы, влияющие на ккм.
- •Экзаменационный билет № 11
- •Гидрозоль AgI получен добавлением 8 мл кi с концентрацией 0,05 моль/л к 10 мл раствора AgNo3 с концентрацией 0,02 моль/л. Напишите формулу мицеллы образовавшегося золя и объясните строение дэс.
- •Экзаменационный билет № 12
- •Экзаменационный билет № 13
- •Потенциальная теория адсорбции Поляни. Адсорбционный потенциал. Характеристическая кривая адсорбции. Температурная инвариантность и афинность характеристических кривых.
- •Экзаменационный билет № 14
- •Экзаменационный билет № 15
- •Экзаменационный билет № 16
- •Экзаменационный билет № 17
- •Ньютоновские жидкости, уравнения Ньютона и Пуазейля. Методы измерения вязкости. Уравнение Эйнштейна для вязкости дисперсных систем, границы применения.
- •Экзаменационный билет № 18
- •Седиментационный анализ. Кривые распределения частиц по размерам, их расчет и назначение, седиментация в центробежном поле.
- •Экзаменационный билет № 19
- •Правило фаз Гиббса и дисперсность. Влияние кривизны поверхности (дисперсности) на внутреннее давление тел (вывод и анализ уравнения Лапласа). Капиллярные явления (уравнение Жюрена).
- •Экзаменационный билет № 20
- •Седиментационно-диффузионное равновесие (гипсометрический закон). Вывод уравнения. Мера седиментационной устойчивости. Факторы, влияющие на седиментационную устойчивость дисперсных систем.
- •Рассчитайте разность уровней воды в двух сообщающихся капиллярах диаметрами 0,1 и 0,3 мм при 20 ºС. Поверхностное натяжение и плотность воды составляют соответственно 72,75 мДж/м2 и 0,998 г/см3.
- •Экзаменационный билет № 21
- •Мономолекулярная адсорбция, форма изотермы адсорбции, уравнение Генри. Основные положения теории Ленгмюра, вывод уравнения и его анализ, линейная форма уравнения Ленгмюра.
- •Строение двойного электрического слоя (дэс) по теории Штерна, перезарядка поверхности. Примеры образования дэс, строение мицеллы.
- •Экзаменационный билет № 22
- •Лиофильные дисперсные системы. Классификация и общая характеристика пав. Термодинамика и механизм мицеллообразования. Строение мицелл пав в водных и углеводородных средах. Солюбилизация.
- •Экзаменационный билет № 23
- •Рассчитайте работу адгезии и коэффициент растекания для системы вода-графит, если известно, что краевой угол равен 90 º, а поверхностное наятжение воды 72 мДж/м2.
- •Экзаменационный билет № 24
- •Лиофильные дисперсные системы. Истинно растворимые и коллоидные пав, их классификация. Мицеллообразование, строение мицелл, методы определения ккм. Факторы, влияющие на ккм.
- •Экзаменационный билет № 25
- •Потенциальная теория адсорбции Поляни. Десорбционный потенциал. Характеристическая кривая адсорбции. Температурная инвариантность и афинность характеристических кривых.
- •Экзаменационный билет № 26
- •Экзаменационный билет № 27
Ньютоновские жидкости, уравнения Ньютона и Пуазейля. Методы измерения вязкости. Уравнение Эйнштейна для вязкости дисперсных систем, границы применения.
Ж
идкообразные
тела классифицируют на ньютоновские и
неньютоновские жидкости. Ньютоновскими
жидкостями называют системы, вязкость
которых не зависит от напряжения сдвига
и является постоянной величиной в
соответствии с законом Ньютона: P
= η
Течение неньютоновских жидкостей не
следует закону Ньютона, их вязкость
зависит от напряжения сдвига. В свою
очередь, они подразделяются на
стационарные, реологические свойства
которых не изменяются со временем, и
нестационарные, для которых эти
характеристики зависят от времени.
Среди неньютоновских стационарных
жидкостей различают псевдопластические
и дилатантные. Типичные зависимости
скорости деформации жидкообразных тел
от напряжения (кривые течения, или
реологические кривые) представлены на
рисунке.
Общую зависимость
напряжения сдвига от скорости деформации
можно выразить в виде степенной функции:
Если n = 1, то данное соотношение переходит в уравнение Ньютона.
Это двухпараметрическое
уравнение известно под названием
математической модели Оствальда —
Вейля. Ньютоновская вязкость η
неньютоновской стационарной жидкости
определяется уравнением
.
Если n = 1, жидкость является ньютоновской и константа k совпадает со значением ньютоновской вязкости (кривая 1). Таким образом, отклонение n от единицы характеризует степень отклонения свойств жидкости от ньютоновских.
Основы теории
вязкости разбавленных лиозолей
(суспензий) были заложены Эйнштейном.
Он исходил из гидродинамических уравнений
для систем макроскопических твердых
сферических частиц,, которые при сдвиге
приобретают дополнительное вращательное
движение. Возникающее при этом рассеяние
энергии является причиной возрастания
вязкости. Эйнштейном была установлена
связь между вязкостью дисперсной системы
η
и объемной долей дисперсной фазы φ:
Формула Эйнштейна не учитывает наличия у частиц поверхностных слоев, таких как адсорбционные, сольватные и двойные электрические. Оно было получено в предположении отсутствия взаимодействия между частицами дисперсной фазы, поэтому оно справедливо только для разбавленных растворов. С увеличением концентрации дисперсной фазы взаимодействие частиц возрастает, и его необходимо учитывать.
Одним из приборов для определения вязкости является капиллярный вискозиметр. При измерении капиллярным вискозиметром, вязкость рассчитывают по уравнению Пуазейля:
Для исследования вязкости неньютоновских жидкостей используется ротационный вискозиметр.
Рассчитайте ζ-потенциал по данным электроосмоса через корундовую (Аl2О3) мембрану: при силе тока 0,015 A за 60 секунд перенесено 1,2 мл раствора, удельная электропроводимость которого χV = 0,012 Ом-1·м-1, поверхностная проводимость χS = 0,005 Ом-1·м-1, η = 10-3 Па·с, ε = 81, ε0 = 8,85·10-12 Ф/м.
Экзаменационный билет № 18
Адгезия, смачивание и растекание жидкостей как поверхностные явления, общность и различие этих явлений. Условия растекания, коэффициент растекания по Гаркинсу. Влияние ПАВ на смачивание и растекание.
Адгезия, смачивание и растекание относятся к межфазным взаимодействиям, которые происходят между конденсированными фазами. Межфазное взаимодействие, или взаимодействие между приведенными в контакт поверхностями конденсированных тел разной природы, называют адгезией (прилипанием).
Смачивание— это поверхностное явление, заключающееся во взаимодействии жидкости с твердым или другим жидким телом при наличии одновременного контакта трех несмешивающихся фаз, одна из которых обычно является газом (воздухом). Степень смачивания количественно характеризуется косинусом краевого угла (угла смачивания), или просто краевым углом (углом смачивания).
Капля жидкости, нанесенная на поверхность, может оставаться на ее определенном участке, и система будет находиться в равновесии в соответствии с законом Юнга, или же растекаться по поверхности. В обоих этих случаях система переходит в состояние с минимальной энергией Гиббса. Если капля не растекается, то, кал было показано выше, краевой угол зависит от соотношения работ адгезии Wа и когезии Wк смачивающей жидкости.
Рассмотрим условия
растекания жидкости 2 по поверхности
3. Изменение энергии Гиббса можно записать
следующим пбразом:
Для самопроизвольного
процесса dG<0
и ds>0:
Если разность
заменить выражением
из уравнения Дюпре, то получим
или
Разницу между
левой и правой частями этих неравенств
называют коэффициентом растекания f
по Гаркинсу:
или
При положительном значении коэффициента f жидкость растекается по поверхности, при отрицательном — нe растекается.
Введение ПАВ уменьшает работу когезии (поверхностное натяжение) жидкости а значит, как следует из уравнения Дюпре-Юнга, увеличивает смачивание. Лучше смачивает та жидкость, которая имеет меньшее поверхностное натяжение или работу когезии.