Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Ответы к экзамену по информатике.docx
Скачиваний:
17
Добавлен:
14.04.2019
Размер:
806.14 Кб
Скачать

14 Элементы теории множеств.

Первичным понятием теории множеств является понятие самого множества. Множество — это совокупность некоторых (произвольных) объектов, объединенных по какому-либо признаку. Элементы множества при этом должны быть различными. Множество обозначается парой скобок , внутри которых либо просто перечисляются элементы, либо описываются их свойства. Например,  — множество натуральных чисел, удовлетворяющих условию , очевидно, пусто. сложение, умножение  — множество основных арифметических операций. Пустое множество обозначается знаком . Если необходимо указать, что объект является элементом множества , то пишут ( принадлежит ), наоборот запись говорит о том, что не принадлежит .

Если каждый элемент множества является элементом множества , то пишут или и говорят, что множество является подмножеством множества . Если есть подмножество множества , причем , то пишут или . Множества, состоящие из одних и тех же элементов, называются равными, то есть , в противном случае . С помощью скобок и операций над множествами можно построить новые множества, более сложные, чем исходные.

Объединение (или сумма). Эта операция над множествами обозначается , определяется как . Все операции над множествами можно иллюстрировать с помощью диаграмм Эйлера2-Венна3. Если за некоторое универсальное множество, содержащее как подмножества все другие множества, обозначить (или ) и изобразить его в виде всей плоскости, то любое множество можно изобразить в виде части плоскости, то есть в виде некоторой фигуры, лежащей на плоскости. Множество о бъединение множеств и , на рис. 1.7 заштриховано. .

Рис. 1.7. Объединение множеств

Пересечением (или произведением) двух множеств называется такое множество , которое состоит из элементов, принадлежащим одновременно обоим множествам, то есть . Пересечение множеств и заштриховано и изображено на рис. 1.8.

Разностью двух множеств и называется множество , состоящее из тех и только тех элементов, которые входят в и одновременно не входят в , то есть (рис. 1.9). Если, в частности, подмножество , то разность обозначается и называется дополнением множества (рис. 1.10).

Дополнение множества

С имметрической разностью или кольцевой суммой множеств и называется множество (рис

. 1.11). Очевидно, что . Если и , то пару элементов называют упорядоченной парой, причем пары и равны тогда и только тогда, когда и .

Р ис. 1.11. Симметрическая разность

Множество, элементами которого являются все упорядоченные пары , , называется прямым или декартовым произведением множеств и и обозначается . Например, , , а . Таким образом, декартово произведение не подчиняется коммутативному закону, и справедливо, если . Произведение называется декартовым квадратом.

Свойства операций объединения, пересечения и дополнения иногда называются законами алгебры множеств. Эти законы аналогичны правилам для равносильностей в булевой алгебре (1.13.1)—(1.13.3).

Часто элементы разных множеств связаны различными соотношениями, например, соотношениями порядка. -местным отношением или -местным предикатом на множествах называется любое подмножество декартова произведения . Обозначение -местного отношения . При отношение называется унарным и является подмножеством множества . Бинарным (или двуместным при ) отношением называется множество упорядоченных пар. Элементы называются координатами или компонентами отношения .

В теории множеств важную роль играют два вида специальных бинарных отношений: отношения эквивалентности и отношения порядка. Прообразами этих отношений служат интуитивные понятия равенства, предшествования и предпочтения.