- •2. Старение как вид упрочнающей обработки. Примеры сплавов, упрочняемых закалкой и старением.
- •3. Жаропрочность. Критерии оценки. Способы повышения. Жаропрочные стали перлитного, аустенитного и мартенситного класса.
- •1. Диаграмма состояния для сплавов с переменной растворимостью.
- •2.Перекристаллизационный отжиг и нормализация.
- •Вопрос 2
- •Вопрос 3
- •5 Билет
- •Вопрос 3
- •1. Сталь 08. Фазовые превращения при охлаждении в равновесное состояние. Структура. Свойства. Типичная то и типичное применение.
- •2. Термическая обработка сплавов с переменной растворимостью. Примеры сплавов.
- •3.Жаростойкость и критерии её оценки. Влияние легирующих элементов на жаростойкость. Жаростойкие стали ферритного и аустенитного(не было) классов. ( х27, х28, х29)
- •1.Диаграмма состояний двойных сплавов. Правило фаз, правило отрезков, правило концентраций. Использование диаграмм состояния для определения свойств сплавов и возможных видов их
- •2.Поверхностная закалка сталей.
- •3.Быстрорежущие стали нормальной и повышенной производительности.
- •1.Сталь 40. Фазовые превращения при охлаждении в равновесное состояние. Структура. Свойства. Типичная то и типичное применение.
- •2.Классификация сталей по назначению, по качеству, по способу раскисления, по равновесной структуре, по структуре нормализации. Примеры сталей различных классов.
- •3.Титан и его сплавы.
- •1. Фазовые превращения при охлаждении в доэвтектических белых чугунах. Структура, свойства, применение.
- •2.Практика отпуска. Обратимая и необратимая отпускная хрупкость.
- •3.Алюминиевые сплавы. (*Как классифицируются, какая термическая обработка).
- •Сталь 65. Фазовые превращения при охлаждении в равновесное состояние. Структура. Свойства. Типичная то и типичное применение.
- •Закаливаемость и прокаливаемость. Влияние легирующих элементов на прокаливаемость. Методы оценки прокаливаемости. Практическое значение.
- •Жаропрочность и критерии её оценки.
- •1.Твёрдые растворы и промежуточные фазы.
- •2.Различные виды закалки.
- •3.Стали для зубчатых колёс и подшипников
- •1.Пластическая деформация. Сдвигово-дислокационный механизм. Изменение структуры и свойств при пластической деформации.
- •2.Превращения при различных степенях переохлаждения. (Превращения аустенита)
- •3.Способы повышения упругих характеристик. Углеродистые и легированные стали для пружин и рессор.
- •1.Диаграмма состояния двойных сплавов образующих твёрдый раствор ограниченной переменной растворимости. Её фазовый анализ. Её практическое значение.
- •2.Азотирование. (Назначение. Технологии процессов. Стали для азотирования. Предварительная термическая обработка).
- •3.Стали обыкновенного качества и качественные. Принцип маркировки. Структура и свойства. Термическая обработка в зависимости от содержания углерода. Применение.
- •2.Закалка стали. Выбор оптимальных температур закалки.
- •3. Магний и сплавы на его основе
- •Сталь у8. Фазовые превращения при охлаждении в равновесное состояние. Структура. Свойства. Типичная то и типичное применение.
- •Способы поверхностного упрочнения сталей.
- •Композиционные материалы. Волокнистые и дисперсно-упрочняемые.
- •Билет №23
- •Сталь 45. Фазовые превращения при охлаждении в равновесное состояние. Структура. Свойства. Типичная то и типичное применение.
- •Влияние углерода и легирующих элементов на критическую скорость охлаждения, на прокаливаемость, на температурный интервал мартенситного превращения. Обработка сталей холодом.
- •Бериллий.
- •Билет №24
- •Кристаллизация металлов из жидкого состояния. Теория затвердевания. Модифицирование. Строение слитка.
- •Упрочняющая термическая обработка алюминиевых сплавов.
- •Низколегированные стали для режущего и измерительного инструмента.
- •Билет №25
- •Диаграмма состояния для случая неограниченной растворимости. … Дендритная ликвация и способы её устранения.
- •Общие закономерности, свойственные химико-термической обработке. Факторы, влияющие на глубину слоя.
- •Коррозионная стойкость. (*Хромистые и хромо-никелиевые нержавеющие стали).
2.Превращения при различных степенях переохлаждения. (Превращения аустенита)

Рис. 12.5. Кинетические кривые превращения аустенита при охлаждении
При малых степенях переохлаждения, в области температур 727…550o С, сущность превращения заключается в том, что в результате превращения аустенита образуется механическая смесь феррита и цементита, состав которой отличается от состава исходного аустенита. Аустенит содержит 0,8 % углерода, а образующиеся фазы: феррит –0,02 %, цементит – 6,67 % углерола.
Время устойчивости аустенита и скорость его превращения зависят от степени переохлаждения.
Максимальная
скорость превращения соответствует
переохлаждению ниже температуры
на
150…200o
С, то есть
соответствует минимальной устойчивости
аустенита.
Механизм превращения представлен на рис. 12.6.

Рис. 12.6. Механизм превращения аустенита в перлит
При образовании перлита из аустенита ведущей фазой является цементит. Зарождение центров кристаллизации цементита облегчено на границе аустенитных зерен. Образовавшаяся пластинка цементита растет, удлиняется и обедняет соседние области углеродом. Рядом с ней образуются пластинки феррита. Эти пластинки растут как по толщине, так и по длине. Рост образовавшихся колоний перлита продолжается до столкновения с кристаллами перлита, растущими из других центров.
Свойства и строение продуктов превращения аустенита зависят от температуры, при которой происходит процесс его распада.
Толщина
соседних пластинок феррита и цементита
определяет дисперсность структуры и
обозначается
.
Она зависит от температуры превращения.
В зависимости от дисперсности продукты
распада имеют различное название.
мм
– перлит.
Образуется при переохлаждении до температуры Т = 650…700 oС, или при скорости охлаждения Vохл = 30…60 oС/ч. Твердость составляет 180…250 НВ.
мм
– сорбит
Образуется при переохлаждении до температуры Т = 600…650 oС, или при скорости охлаждения Vохл = 60 oС/с. Твердость составляет 250…350 НВ. Структура характеризуется высоким пределом упругости, достаточной вязкостью и прочностью.
мм
– троостит
Образуется при переохлаждении до температуры Т = 550…600 oС, или при скорости охлаждения Vохл = 150 oС/с. Твердость составляет 350…450 НВ. Структура характеризуется высоким пределом упругости, малой вязкостью и лпастичностью.
Твердость ферритно-цементитной смеси прямопропорциональна площади поверхности раздела между ферритом и цементитом..
3.Способы повышения упругих характеристик. Углеродистые и легированные стали для пружин и рессор.
Пружины, рессоры и другие упругие элементы являются важнейшими деталями различных машин и механизмов. В работе они испытывают многократные переменные нагрузки. Под действием нагрузки пружины и рессоры упруго деформируются, а после прекращения действия нагрузки восстанавливают свою первоначальную форму и размеры. Особенностью работы является то, что при значительных статических и ударных нагрузках они должны испытывать только упругую деформацию, остаточная деформация не допускается. Основные требования к пружинным сталям – обеспечение высоких значений пределов упругости, текучести, выносливости, а также необходимой пластичности и сопротивления хрупкому разрушению, стойкости к релаксации напряжений.
Пружины работают в области упругих деформаций, когда между действующим напряжением и деформацией наблюдается пропорциональность. При длительной работе пропорциональность нарушается из-за перехода части энергии упругой деформации в энергию пластической деформации. Напряжения при этом снижаются.
Самопроизвольное снижение напряжений при постоянной суммарной деформации называется релаксацией напряжений.
Релаксация приводит к снижению упругости и надежности работы пружин.
Пружины изготавливаются из углеродистых (65, 70) и легированных (60С2, 50ХГС, 60С2ХФА, 55ХГР) конструкционных сталей.
Для упрочнения пружинных углеродистых сталей применяют холодную пластическую деформацию посредством дробеструйной и гидроабразивной обработок, в процессе которых в поверхностном слое деталей наводятся остаточные напряжения сжатия.
Повышенные значения предела упругости получают после закалки со средним отпуском при температуре 400…480 oС.
Для сталей, используемых для пружин, необходимо обеспечить сквозную прокаливаемость, чтобы получить структуру троостита по всему сечению.
Упругие и прочностные свойства пружинных сталей достигаются при изотермической закалке.
Пружинные стали легируют элементами, которые повышают предел упругости – кремнием, марганцем, хромом, вольфрамом, ванадием, бором.
В целях повышения усталостной прочности не допускается обезуглероживание при нагреве под закалку и требуется высокое качество поверхности.
Пружины и другие элементы специального назначения изготавливают из высокохромистых мартенситных (30Х13), мартенситно-стареющих (03Х12Н10Д2Т), аустенитных нержавеющих (12Х18Н10Т), аустенито-мартенситных (09Х15Н8Ю), быстрорежущих (Р18) и других сталей и сплавов.
Билет № 13
