Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
!Билеты по Начерталке!.doc
Скачиваний:
12
Добавлен:
20.12.2018
Размер:
244.74 Кб
Скачать

1) Если , то плоскости совпадают;

2) Если , то плоскости параллельны;

3) Если или , то плоскости пересекаются и система уравнений

                                                  (6)

является уравнениями прямой пересечения данных плоскостей.

   Доказательство. Первое и второе условия теоремы равносильны коллинеарности нормальных векторов данных плоскостей:

               .

   Если , то , , ,  и уравнение плоскости  принимает вид:

               

Коэффициент пропорциональности k не может быть равен нулю, т.к.  и при  получаем, что , что противоречит определению нормального вектора. Следовательно, уравнение плоскости

                

совпадает с уравнением плоскости , а это означает, что плоскости совпадают.

   Если , то это означает коллинеарность нормальных векторов обеих плоскостей, а значит плоскости либо параллельны, либо совпадают. Но в этом случае плоскости не могут совпадать и остается единственная возможность их параллельности. Третье условие теоремы равносильно тому, что нормальные векторы плоскостей не коллинеарные, а потому они не совпадают и не параллельны, а следовательно, они пересекаются. Из геометрии известно, что линия пересечения двух плоскостей является прямой. Точка М лежит на прямой пересечения двух плоскостей  и  тогда и только тогда, когда она лежит одновременно на обеих плоскостях и ее координаты удовлетворяют обоим уравнениям системы (6), т.е. являются решением этой системы. А это означает, что система (6) является уравнениями прямой пересечения плоскостей, ч.т.д.Теорема доказана.

Билет №10 Паралельность прямых и плоскости

Определение 2.3.  Прямая и плоскость называются параллельными , если они не имеют общих точек. Если прямая a параллельна плоскости α, то пишут a  || α.

Теорема 2.4. Признак параллельности прямой и плоскости.

Если прямая вне плоскости параллельна какой-нибудь прямой на плоскости, то эта прямая параллельна и самой плоскости

Пусть b    α, a  ||  b и a    α (чертеж 2.2.1). Доказательство проведем от противного. Пусть a не параллельна α, тогда прямая a пересекает плоскость α в некоторой точке A . Причем A     b , так как a  ||  b . Согласно признаку скрещивающихся прямых прямые a и b скрещивающиеся. Мы пришли к противоречию.

Теорема 2.5. Теорема о следе.

Если плоскость β проходит через прямую a , параллельную плоскости α, и пересекает эту плоскость по прямой b , то b  ||  a .

Доказательство

Действительно, прямые a и b не являются скрещивающимися, так как они лежат в плоскости β. Кроме того, эти прямые не имеют общих точек, так как a  || α.

Билет №11 Пересечение прямой линии с плоскостью

Если прямая не лежит в плоскости и не параллельна ей, она пересекает плоскость. Задача на определение точки пересечения прямой с плоскостью сводится к следующему: 1) проведению вспомогательной плоскости (Вспомогательную плоскость рекомендуется выбирать такую, которая даст наиболее простое графическое решение задачи) через данную прямую; 2) нахождению линии пересечения вспомогательной плоскости с данной плоскостью; 3) определению точки пересечения данной прямой с линией пересечения плоскостей, а следовательно, с данной плоскостью.

Билет №10 Способы преобразования чертежей Решение метрических задач способом вращения вокруг осей

Способы преобразования комплексного чертежа. Способ комплексного проецирования основан на том, что точку (предмет) проецируют на несколько взаимно перпендикулярных плоскостей проекций, используя прямоугольное проецирование, а затем эти плоскости проекции совмещают с одной плоскостью (Рис. 1, 2) При использовании двух плоскостей проекции (см. рис. 2) плоскость П1 располагают горизонтально и называют горизонтальной плоскостью поверхности.

Сущность этого способа заключается в том, что пространственные положения заданных элементов остается неизменным, а изменяется система плоскостей проекций, на которых строятся новые изображения геометрических образов. Дополнительные плоскости проекции вводятся таким образом, чтобы на них интересующие нас элементы изображались в удобном для конкретной задаче положении.

Билет №11Решение метрических задач способом вращения вокруг оси

Задачи метрические – при решении задач этой группы появляется возможность ответить на вопросы, касающиеся как внутренней метрики заданных геометрических объектов (определение расстояния между различными точками объекта и нахождения углов между линиями и поверхностями, принадлежащими этому объекту), так и определение расстояний между точками и величин углов между линиями и поверхностями, принадлежащими различным объектам.

В начертательной геометрии задачи решаются графически. Количество и характер геометрических построений при этом определяются не только сложностью задачи, но и в значительной степени зависит от того, с какими проекциями (удобными или неудобными) приходится иметь дело. При этом наиболее выгодным частным положением геометрического объекта следует считать:

· Положение, перпендикулярное к плоскости проекций (для решения позиционных, а в ряде случаев, и метрических задач);

·  Положение, параллельное по отношению к плоскости проекций (при решении метрических задач).

При решении метрических задач, связанных с определением истинных размеров изображенных на эпюре фигур, могут встретиться значительные трудности, если заданные проекции не подвергнуть специальным преобразованиям.

Рассмотрим на примере: Определить расстояние от точки А до прямой m. Расстояние от точки до прямой - это натуральная величина перпендикуляра восстановленного из точки к прямой линии. Простейшим условием такой задачи является случай, когда прямая является проецирующей. Определим расстояние от точки А до прямой m, когда прямая является горизонтально проецирующей линией (рис. 4.1), т.е.  m^П1, m \\ П2, m \\ П3. Согласно, теореме о проецировании прямого угла, перпендикуляр из проекций точки А можно проводить к фронтальной и профильной проекции прямой m, при этом полученный отрезок АК- горизонталь, т.е. параллелен горизонтальной плоскости проекций и на эту плоскость проецируется в натуральную величину

Билет №14 Кривые линии

Кривая линия определяется положением составляющих ее точек. Кривую линию называют плоской, если все точки кривой лежат в одной плоскости, и пространственной, если точки не принадлежат одной плоскости.

Кривая линия - это множество точек пространства, координаты которых являются функциями одной переменной. Термин «кривая» в разных разделах математики определяется по-разному.

 В начертательной геометрии кривую рассматривают как траекторию, описанную движущей точкой, как проекцию другой кривой, как линию пересечения двух поверхностей, как множество точек, обладающих каким-либо общим для всех их свойством и т.д Каждая кривая включает в себя геометрические элементы, которые составляют её определитель, т.е. совокупность независимых условий, однозначно определяющих эту кривую.

Различны и способы задания кривых:

· аналитический – кривая задана математическим уравнением;

· графический – кривая задана визуально на носителе графической информации;

· табличный – кривая задана координатами последовательного ряда точек.

Уравнением кривой линии называется такое соотношение между переменными, которому удовлетворяют координаты точки, принадлежащей кривой.

В основу классификации кривых положена природа их уравнений.

Кривые подразделяются на алгебраические и трансцендентные в зависимости от того, являются ли их уравнения алгебраическими или трансцендентными в прямоугольной системе координат.

Плоская кривая линия называется алгебраической, если её уравнение f (xy)=0. Функция f (xy) является степенным множителем относительно переменных х и у; в остальных случаях кривая называется трансцендентной.

Кривая линия, представленная в декартовых координатах уравнением п-й степени, называется алгебраической кривой п-го порядка.

Кривые линии, все точки которых принадлежат одной плоскости, называются плоскими, остальные пространственными.

Билет №15 Поверхности классификация поверхностей

Пове́рхность — традиционное название для двумерного многообразия в пространстве.

Интуитивно простую поверхность можно представить как кусок плоскости, подвергнутый непрерывным деформациям (растяжениям, сжатиям и изгибаниям).

Более строго, простой поверхностью называется образ гомеоморфного отображения (то есть взаимно однозначного и взаимно непрерывного отображения) внутренности единичного квадрата. Этому определению можно дать аналитическое выражение. Пусть на плоскости с прямоугольной системой координат u и v задан квадрат, координаты внутренних точек которого удовлетворяют неравенствам 0 < u < 1, 0 < v < 1. Гомеоморфный образ квадрата в пространстве с прямоугольной системой координат х, у, z задаётся при помощи формул х = x(u, v), у = y(u, v), z = z(u, v) (параметрическое задание поверхности). При этом от функций x(u, v), y(u, v) и z(u, v) требуется, чтобы они были непрерывными и чтобы для различных точек (u, v) и (u', v') были различными соответствующие точки (x, у, z) и (x', у', z'). Примером простой поверхности является полусфера. Вся же сфера не является простой поверхностью. Это вызывает необходимость дальнейшего обобщения понятия поверхности.  Классификация поверхностей Линейчатые поверхности - поверхности, которые могут быть образованы с помощью прямой линии.  Нелинейчатые поверхности - поверхности, которые могут быть образованы только с помощью кривой линии.  Развертывающиеся поверхности - поверхности, которые после разреза их по образующей могут быть совмещены с плоскостью без наличия разрывов и складок.  Неразвертывающиеся поверхности - поверхности, которые не могут быть совмещены с плоскостью без наличия разрывов и складок.   Поверхности с постоянной образующей - поверхности, образующая которых не изменяет своей формы в процессе образования поверхности.    Поверхности с переменной образующей - поверхности, образующая которых изменяется в процессе образования поверхности.

Билет № 16 Точки и линии на поверхности

Все поверхности можно разделить на плоские, многогранные и кривые.Плоскость не параллельная и не перпендикулярная ни одной из плоскостей проекций-плоскость общего положения.Плоскость определяют проекциями каких-либо пренадлежащих ей фигур.Задают на чертеже проекциями трёх точек, не принадлежащих одной прямой,либо проекциями прямой и не принадлежащей ей точки,либо двумя пересекающимися прямыми, либо двумя параллельными прямыми,либо проекциями плоской фигуры.Чтобы построить прямую, пренадлежашую плоскости две точки этой прямой должны пренадлежать плоскости (т.е пренадлежать тем элементам, которыми задана плоскость).Точка пренадлежит плоскости, если она пренадлежит прямой, пренадлежащей плоскости.Чтобы построить горизонталь-сначала строят её фронтальную проеклию в виде прямой линии, чтобы построить фронталь-строят горизонтальную её проекцию.Когда строят профильную прямую-проводят две прямые линии на П1 и П2, далее по линиям связи.Чтобы построить плоскую фигуру в плоскости-на одной проекции точки задаём произвольно, а на второй- по их пренадлежности плоскости и линиям связи.Т.е через каждую точку проводим линию, пренадлежешую плоскости.

Билет№18 Пересечение поверхностей плоскостями

зависимости от положения плоскости по отношению к плоскостям проекций, сложность решения позиционной задачи, по определению линии пересечения ее с поверхностью существенно меняется. Наиболее простым представляется случай, когда плоскость проецирующая.

Пересечение поверхности проецирующей плоскостью.

Рассмотрим решение задачи по определению линии пересечения сферы фронтально проецирующей плоскостью α

Пересечение поверхности  плоскостью общего положения.

Построение линии пересечения плоскости общего положения и поверхности возможно двумя способами:

1. Преобразовать чертеж так, чтобы плоскость стала занимать проецирующее положение и тогда дальнейшее решение задачи соответствует рассмотренному выше.

2. Для нахождения точек, одновременно принадлежащих плоскости общего положения и поверхности, использовать метод вспомогательных секущих плоскостей.

Рассмотрим на примерах решения задач оба способа

Билет№19 Пересечение прямых с поверхностью

В общем случае для графического определения точек пересечения линии с поверхностью (рис.8.28) необходимо выполнить ряд геометрических построений, описываемых следующим алгоритмом:

1. Заключаем линию l в некоторую вспомогательную поверхность Δ;

1. Строим линию m пересечения данной поверхности Ф и вспомогательной поверхности Δ;

2. Определяем искомую точку К пересечения линии l и m (точка может быть не единственная).

В качестве вспомогательной поверхности целесообразно использовать проецирующую цилиндрическую поверхность, направляющей которой должна служить заданная линия, а –прямолинейными образующими – проецирующие прямые.

Пример: Определить точки пересечения прямой линии с поверхностью конуса вращения и определить видимость прямой по отношению к конусу.

Если в качестве вспомогательной секущей плоскости можно выбрать горизонтально проецирующую или фронтально проецирующую плоскости, то в сечении получатся соответственно гипербола (рис.8.29а) или эллипс (рис.8.29б). Построение кривых линий значительно усложняет задачу

Билет№19 Поверхности вращения

Поверхность вращенияповерхность, образуемая при вращении вокруг прямой (оси поверхности) произвольной линии (прямой, плоской или пространственной кривой). Например, если прямая пересекает ось вращения, то при её вращении получится коническая поверхность, если параллельна оси — цилиндрическая, если скрещивается с осью — однополостный гиперболоид вращения. Одна и та же поверхность может быть получена вращением самых разнообразных кривых.

  • Сфера (получается вращением окружности вокруг оси, лежащей в той же плоскости и проходящей через её центр).

  • Тор (получается вращением окружности вокруг не пересекающей её оси, лежащей в той же плоскости).

  • Эллипсоид вращенияэллипсоид, длины двух полуосей которого совпадают. Может быть получен вращением эллипса вокруг одной из его осей.

  • Параболоид вращения ― эллиптический параболоид, полученный вращением параболы вокруг своей оси.

  • Конус получается вращением прямой вокруг другой прямой, пересекающей первую.

  • Круговая цилиндрическая поверхность

  • Катеноид

Площадь поверхности вращения, образованной вращением плоской кривой конечной длины вокруг оси, лежащей в плоскости кривой, но не пересекающей кривую, равна произведению длины кривой на длину окружности с радиусом, равным расстоянию от оси до центра масс кривой. Это утверждение называется второй теоремой Гюльдена, или теоремой Паппа о центроиде.

Поверхности вращения – это поверхности созданные при вращении образующей m вокруг оси i (рис.96).

Геометрическая часть определителя состоит из двух линий: образующей m и оси i (рис 96.б).

Алгоритмическая часть включает две операции:

1. на образующей m выделяют ряд точек A, B, C, …F,

2. каждую точку вращают вокруг оси i.

Так создается каркас поверхности, состоящей из множества окружностей (рис.97), плоскости которых расположены перпендикулярно оси i. Эти окружности называются параллелями; наименьшая параллель называется горлом, наибольшая – экватором.

Из закона образования поверхности вращения вытекают два основных свойства:

1. Плоскость перпендикулярная оси вращения, пересекает поверхность по окружности – параллели.

2. Плоскость, проходящая через ось вращения, пересекает поверхность по двум

 симметричным относительно оси линиям – меридианам.

Плоскость, проходящая через ось параллельно фронтальной плоскости проекций называется плоскостью главного меридиана, а линия, полученная в сечении, – главным меридианом.

Рассмотрим наиболее распространенные поверхности вращения с криволинейными образующими:

Сфера – образуется вращением окружности вокруг её диаметра (рис.98).

При сжатии или растяжении сферы она преобразуется в эллипсоиды, которые могут быть получены вращением эллипса вокруг одной из осей: если вращение вокруг малой оси, то эллипсоид называется сжатым или сфероидом (рис.99), если вокруг большой – вытянутым (рис.100).

Тор – образуется при вращении окружности вокруг оси, не проходящей через центр окружности

Параболоид вращения – образуется при вращении параболы вокруг своей оси

Гиперболоид вращения – различают одно (рис.103а) и двух (рис.103б) полостной гиперболоиды вращения. Первый получается при вращении вокруг мнимой оси, а второй – вращением гиперболы вокруг действительной оси.

В состав определителя поверхности вращения входит образующая l, ось вращения i и условие о том, что образующая вращается вокруг оси i: Г (l, i), [li = Ri (l)]..  Каждая точка образующей l (А, В, С, D, Е) при вращении вокруг оси i описывает окружность с центром на оси вращения. Эти окружности называют параллелями. Наибольшую и наименьшую параллель называют экватором и горлом.  Плоскость a проходящую через ось i называют меридиальной, а линии по которым эта плоскость пересекает поверхность называются меридианом. Меридиан, расположенный в плоскости b, параллельной плоскости проекций, называется главным меридианом q. Главный меридиан q делит поверхность на две части: видимую и невидимую относительно той плоскости, которой параллельна плоскость главного меридиана.

При задании поверхности на ортогональном чертеже ось вращения обычно располагают перпендикулярно одной из плоскостей проекций. На рисунке ось i П1.  В этом случае все параллели поверхности, горло и экватор проецируются на П1 в истинную величину, а на П2 в отрезки прямых, перпендикулярные i2 – проекции оси i. Задание поверхности осью i и образующим полумеридианом l ненаглядно. Поэтому на чертеже строят проекции главного меридиана q1 и q2, проводят проекции горла, экватора и двух параллелей, образованных вращением верхней точки А и нижней – Е.

 Поверхности вращения обладают некоторыми важными свойствами, использующими в процессе конструирования деталей различных машин и механизмов. Например, свойством сдвигаемости, состоящим в том, что поверхность вращения может, вращаясь вокруг оси, сдвигаться без деформации вдоль самой себя.  Меридиан поверхности вращения является кратчайшей (или геодезической) линией поверхности. Параллели и меридианы, пересекаясь под прямыми углами, образуют ортогональную сеть на поверхности вращения, аналогично прямоугольной декартовой сети на плоско

Билет №22 Взаимное пересечение поверхностей

А) Способ вспомогательной секущей плоскостью

Б) Способ вспомогательной секущей сферой

Взаимное пересечение поверхностей - позиционная задача, решаемая с использованием метода вспомогательных секущих поверхностей посредников.

Линией пересечения двух поверхностей является множество точек, общих для данных поверхностей. Из этого множества выделяют характерные (опорные или главные) точки, с которых следует начинать построение этой линии. Они позволяют увидеть, в каких границах можно изменять положение вспомогательных секущих поверхностей для определения остальных точек.

К таким точкам относятся: экстремальные точки - верхняя и нижняя точки относительно той или иной плоскости проекций; точки, расположенные на очерковых образующих некоторых поверхностей; точки границы зоны видимости и т.д.

Следует имеет в виду, что линия пересечения двух поверхностей в проекциях всегда располагается в пределах контура наложения проекций двух пересекающихся поверхностей.

Иногда целесообразно воспользоваться преобразованием чертежа, чтобы представить пересекающиеся поверхности (или одну из них) в частном положении.

Для определения этих точек часто пользуются вспомогательными секущими поверхностями.

В общем случае решение задачи по построению линии пересечения двух поверхностей может быть сведено к рассмотренным ранее задачам по определению: