
- •Вопрос 1. Коллекторные машины пт. Упрощённая модель коллекторной машины. Принцип действия генератора и двигателя пт.
- •Вопрос 2. Устройство коллекторной машины. Конструкция статора и якоря. Назначение конструктивных узлов статора и ротора. Материалы конструктивных узлов статора и ротора.
- •Вопрос 3. Обмотки якоря мпт. Основные понятия. Принцип выполнения обмоток якоря. Типы обмоток - простые и сложные петлевые и волновые.
- •Вопрос 4. Параллельные ветви обмотки якоря. Условия симметрии обмотки якоря. Уравнительные соединения. Уравнители первого и второго рода. Комбинированная обмотка.
- •Вопрос 5. Эдс и электромагнитный момент машины пт. Выбор типа обмотки. Способы возбуждения машин пт.
- •Вопрос 6. Реакция якоря машины постоянного тока. Магнитное поле при нагрузке. Влияние реакции якоря на работу машин и ее устранение.
- •Вопрос 7. Коммутация в машинах постоянного тока. Причины, вызывающие искрение на коллекторе. Сущность процесс коммутации, виды коммутации. Способы улучшения коммутации.
- •Вопрос 8. Генераторы постоянного тока. Основные понятия. Параметры и характеристики. Уравнения равновесия эдс и моментов генератора.
- •Вопрос 9. Генератор независимого возбуждения Характеристики холостого хода, внешняя регулировочная, нагрузочная, короткого замыкания. Вид и анализ.
- •Вопрос 10. Генератор параллельного возбуждения. Характеристики холостого хода, внешняя, регулировочная, нагрузочная, короткого замыкания. Вид и анализ.
- •11. Двигатели постоянного тока. Основные понятия. Уравнения равновесия эдс и моментов двигателя.
- •Вопрос 12. Потери и кпд коллекторной машины постоянного тока. Зависимость кпд от нагрузки.
- •Вопрос 13. Двигатели постоянного тока независимого и параллельного возбуждения. Рабочие характеристики. Их вид и анализ.
- •Вопрос 14. Двигатели постоянного тока последовательного и смешанного возбуждения. Рабочие характеристики. Их вид и анализ.
- •Вопрос 15. Регулирование частоты вращения двигателей постоянного тока различными способами. Схемы регулирования частоты вращения.
- •Вопрос 16. Пуск двигателей постоянного тока. Схема включения пускового реостата. Прямой пуск. Пуск при пониженном напряжении.
- •Вопрос 17. Универсальные коллекторные двигатели. Схема двигателя. Конструкция, принцип действия, особенности работы, рабочие характеристики.
- •Вопрос 18. Тахогенераторы постоянного тока, электромашинные усилители(эму). Конструкция, принцип действия, особенности работы.
- •Вопрос 19. Исполнительные двигатели постоянного тока. Конструкция, принцип действия, особенности работы.
- •Вопрос 20. Вентильные двигатели. Конструкция, принцип действия, особенности работы.
- •Вопрос 21. Трансформаторы. Назначение, области применения, паспортные данные. Принцип работы.
- •Вопрос 22. Устройство и основные элементы конструкции трансформатора.
- •Вопрос 23.Уравнения напряжения трансформатора. Коэффициент трансформации. Уравнения магнитодвижущих сил и токов. Воздействие мдс вторичной обмотки на основной магнитный поток.
- •Вопрос 24. Приведение параметров вторичной обмотки. Векторная диаграмма приведенного трансформатора при активно-индуктивной и при активно-емкостной нагрузках.
- •Вопрос 25. Схема замещения приведенного трансформатора. Назначение, процесс перехода от реального трансформатора.
- •Вопрос 26. Внешняя характеристика, потери и кпд трансформатора. Зависимость кпд от нагрузки.
- •Вопрос 27. Трехфазный трансформатор. Схемы соединения обмоток трехфазных трансформаторов. Группы соединения обмоток. Способы определения группы соединения.
- •Вопрос 28. Параллельная работа трансформаторов. Необходимость параллельной работы. Условия включения на параллельную работу.
- •Вопрос 29. Регулирование напряжения трансформаторов. Необходимость и назначение регулирования. Способы регулирования.
- •Вопрос 30.Трех- и многообмоточные трансформаторы. Принцип работы, виды, уравнения напряжения и токов, схемы. Целесообразность применения. Мощность многообмоточного трансформатора.
- •Вопрос 31. Автотрансформатор. Назначение, устройство, принцип действия. Мощности автотрансформатора. Достоинства и недостатки.
- •Вопрос 32. Трансформаторы с плавным регулированием напряжения: с подвижным сердечником, с дополнительными магнитными шунтами. Назначение, устройство, принцип действия.
- •Вопрос 33. Трансформаторы для выпрямительных устройств. Назначение и особенности работы.
- •Вопрос 34. Сварочные трансформаторы. Назначение, особенности, и виды конструкции. Принцип действия. Режимы работы.
- •Вопрос 35. Пик-трансформаторы. Назначение, принцип действия, устройство.
- •Вопрос 36. Получение вращающегося магнитного поля 3-х фазной и 2-х фазной системах токов. Условия получения кругового вращающегося магнитного поля. Эллиптические и пульсирующие магнитные поля.
- •Вопрос 37. Устройство статора бесколлекторной машины переменного тока. Обмотки машин переменного тока. Способы выполнения обмоток. Классификация и выбор обмоток.
- •Вопрос 38. Принципы построения трехфазных статорных обмоток. Шаг обмотки. Число пазов на полюс и фазу. Число катушечных групп. Число электрических градусов на один паз.
- •Вопрос 39. Принцип действия асинхронного двигателя. Устройство асинхронных двигателей с короткозамкнутым и фазным ротором. Схемы включения двигателей.
- •Вопрос 40. Режимы работы асинхронной машины: двигательный генераторный и тормозной. Условия перехода асинхронной машины в указанные режимы. Понятие параметра скольжение.
- •Вопрос 41. Уравнения напряжений, мдс и токов асинхронного двигателя. Приведение параметров обмотки ротора. Векторная диаграмма и порядок ее построения. Схема замещения асинхронного двигателя.
- •Вопрос 42. Потери и кпд асинхронного двигателя. Виды потерь. Энергетическая диаграмма ад.
- •Вопрос 43. Электромагнитный момент и механические характеристика ад. Характерные точки и анализ механической характеристики. Устойчивость работы и перегрузочная способность.
- •Вопрос 44. Механическая характеристика Ад при изменениях напряжения сети активного сопротивления обмотки ротора. Ее анализ.
- •Влияние напряжения на вид механической
- •Вопрос 46. Пусковые свойства асинхронных двигателей. Пуск двигателя с фазным ротором. Схема и процесс пуска.
- •Вопрос 47. Пуск асинхронных двигателей с короткозамкнутым ротором. Различные способы пуска, их схемы, достоинства и недостатки.
- •Вопрос 49. Регулирование частоты вращения ад. Основные способы, их техническая реализация. Достоинства и недостатки.
- •Вопрос 51. Однофазный двигатель с экранированными полюсами. Устройство, принцип действия, основные характеристики.
- •Вопрос 52. Трехфазный ад в режиме однофазного. Схемы включения, расчет и выбор конденсатора.
- •Вопрос 53. Индукционный регулятор и фазорегулятор. Преобразователь частоты. Назначение, устройство, принцип действия.
- •Вопрос 54. Сельсины. Назначение, виды, устройство и принцип действия. Схема включения сельсинов в индикаторном режиме.
- •Вопрос 55. Асинхронные исполнительные двигатели. Конструкция, принцип действия, особенности работы.
- •Вопрос 56. Синхронные машины. Типы синхронных машин и их устройство. Принцип действия синхронных машин. Способы возбуждения синхронных машин.
- •Вопрос 57. Магнитное поле и реакция якоря синхронной машины. Уравнение напряжений синхронного генератора. Векторные диаграммы синхронного генератора при различных видах нагрузок.
- •Вопрос 58. Характеристики синхронного генератора: холостого хода, короткого замыкания, внешняя характеристика, регулировочная, нагрузочная, угловые характеристики. Их вид и анализ.
- •Вопрос 59. Потери и кпд синхронных машин. Магнитные потери. Кпд синхронного генератора. Энергетическая диаграмма.
- •Вопрос 62. Синхронные машины специального назначения. Реактивные синхронные, гистерезесные, шаговые двигатели. Назначение, устройство и принцип действия.
Вопрос 54. Сельсины. Назначение, виды, устройство и принцип действия. Схема включения сельсинов в индикаторном режиме.
Сельсинами называются электрические микромашины переменного тока, обладающие свойством самосинхронизации. Сельсин имеет однофазную обмотку возбуждения и трехфазную обмотку синхронизации, соединенную звездой. Одна из обмоток располагается на роторе, а другая — на статоре.
На
обмотки возбуждения сельсинов подано
напряжение U1.
Ток, проходящий по ним , создает магнитный
поток. В свою очередь магнитный поток
наводит в обмотках синхронизации ЭДС:
Ед – в сельсине-датчике (СД) и Еп в
сельсине-приемнике (СП). Если ротор СД
занимает такое же положение как и ротор
СП, их ЭДС равны, и тока в цепи синхронизации
нет. Если ротор СД повернуть на угол а,
то одноименные фазы обмоток синхронизации
сельсинов окажутся не в одинаковых
условиях по отношению к магнитному
потоку и их ЭДС не будут одинаковы. В
результате возникнет ток синхронизации,
вызванный разность ЭДС сельсинов. Он,
взаимодействуя с магнитным полем,
создаст вращающие моменты на роторе
СД, направленные встречно повороту, а
на роторе СП – в сторону поворота.
Поэтому поворот ротора СД будет
сопровождаться синхронным поворотом
ротора СП.
Вопрос 55. Асинхронные исполнительные двигатели. Конструкция, принцип действия, особенности работы.
В
системах управления, регулирования и
контроля широко применяются управляемые
электродвигатели небольшой мощности.
С помощью этих двигателей осуществляется
преобразование электрического сигнала
в механическое перемещение — вращение
вала. Такие электродвигатели называют
исполнительными (ИД).
Характер требований, предъявляемых к исполнительным двигателям, определяется спецификой их работы: частые пуски, реверсы, постоянно изменяющаяся частота вращения. Основные требования - отсутствие самохода, т. е. самоторможение при снятии сигнала управления; широкий диапазон регулирования частоты вращения; линейность характеристик; большой пусковой момент; малая мощность управления; быстродействие (малоинерционность).
На статоре асинхронного исполнительного двигателя расположена двухфазная обмотка. Одна из фазных обмоток — обмотка возбуждения (ОВ) - постоянно включена в сеть с напряжением U1, а на другую - обмотку управления (ОУ) — напряжение (сигнал управления) Uc подается лишь при необходимости включения двигателя.
Асинхронные исполнительные двигатели выпускаются на небольшие мощности и имеют несколько разновидностей в зависимости от выполнения ротора: с обмотки в виде беличьей клетки, с полым немагнитным ротором и полым ферромагнитным ротором.
Ротор с беличьей клеткой имеет обычную конструкцию. Для увеличения сопротивления клетка выполняется из материалов с повышенным удельным сопротивлением (латунь, бронза и др.). Недостатком такого ротора является большой его момент инерции, что снижает быстродействие двигателя.
Значительно меньший момент инерции имеет полый ротор, который выполняется в виде тонкостенного стакана, с одной торцевой стороны насаженного на вал. Немагнитный полый ротор изготовляется из алюминиевого сплава. Толщина его стенок 0,2 - 1 мм. Полый ротор, закрепленный на валу, вращается в зазоре между внешним и внутренним статорами. На внешнем статоре располагаются обмотки, а внутренний статор служит для уменьшения магнитного сопротивления в контуре главного магнитного потока. Как внешний, так и внутренний статор собирается из листов электротехнической стали, покрытых лаком. Воздушным зазором в двигателе с полым немагнитным ротором следует считать зазор между внутренним и внешним статорами. Он относительно велик: 0,5-1,5 мм. Вследствие этого такие двигатели имеют увеличенный ток холостого хода; он составляет 0,8-0,9 номинального тока. Это приводит к увеличению габаритов двигателя и снижению его КПД.
Иногда полый ротор выполняется ферромагнитным (стальным). В этом случае внутренний статор не требуется, так как магнитный поток замыкается по стенкам ротора (толщина его стенок 0,5-3 мм). Конструктивно двигатели с ферромагнитным ротором получаются проще, чем двигатели с полым немагнитным ротором.
У двигателей с ферромагнитным полым ротором активное сопротивление ротора весьма значительно, так как удельное сопротивление стали больше, чем меди и алюминия: кроме того, оно возрастает из-за эффекта вытеснения тока к внешней цилиндрической поверхности ротора. Поэтому КПД таких двигателей еще ниже, чем двигателей с полым немагнитным ротором. Уступают они им и по быстродействию. Иногда для уменьшения активного сопротивления ротора производят его омеднение.