Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Машины.docx
Скачиваний:
204
Добавлен:
20.12.2018
Размер:
2.4 Mб
Скачать

Вопрос 41. Уравнения напряжений, мдс и токов асинхронного двигателя. Приведение параметров обмотки ротора. Векторная диаграмма и порядок ее построения. Схема замещения асинхронного двигателя.

Уравнение напряжений обмотки статора асинхронного двигателя:

1 = (-1) + j 1 x1 + 1r1

Уравнение напряжений для цепи ротора асинхронного двигателя:

2s - j2 x2 s -2 r2

Уравнение токов асинхронного двигателя:

I1 =Io – I`2

МДС обмоток статора и ротора на один полюс в режиме на­груженного двигателя

F1 = 0,45 m1 I1 ω1 kоб1/ P

F2 = 0,45 m2 I2 ω2 kоб2/ P

где m2 — число фаз в обмотке ротора; ko62 — обмоточный коэффи­циент обмотки ротора.

Чтобы векторы ЭДС, напряжений и токов обмоток статора и ротора можно было изобразить на одной векторной диаграмме, следует параметры обмотки ротора привести к обмотке стато­ра, т. е. обмотку ротора с числом фаз m2, обмоточным коэффици­ентом ko62 и числом витков одной фазной обмотки ω2 заменить об­моткой с m1, ω1 и kоб1. При этом мощности и фазовые сдвиги векторов ЭДС и токов ротора после приведения должны остаться такими же, что и до приведения.

Осно­ванием для построения этой диаграммы являются уравнение токов и уравнения напряжений обмоток статора и ротора.

Порядок построения векторной диаграммы:

1. Откладываем вектор магнитного потока Ф.

2. Под углом 90о к Ф в сторону отставания откладываем векторы ЭДС Е2/ и Е1.

3. Под углом фи2 к вектору Е2/ в сторону отставания (обмотка ротора содержит индуктивность) откладываем вектор тока I2/.

4. Используя третье уравнение токов находим вектор тока ротора I2/.

5. Вектор напряжения U1 определяются путем построения по уравнению напряжения.

6. Достраиваем диаграмму, учитывая уравнение напряжения ротора.

Схемы замещения применяет для упрощения расчетов.

На рис. а представлена Т-образ­ная схема замещения. Магнитная связь обмо­ток статора и ротора в асинхронном двигателе на схеме замещения заменена электрической связью цепей статора и ротора. Активное со­противление можно рассматривать как внешнее сопротивление, включенное в обмотку неподвижного ротора. В этом случае асинхронный двигатель аналогичен трансформатору, работающе­му на активную нагрузку. Сопротивление– единст­венный переменный параметр схемы. Значение этого сопротивле­ния определяется скольжением, а следовательно, механической нагрузкой на валу двигателя. Так, если нагрузочный момент на валу двигателя М2 = 0, то скольжение s ≈ 0. При этом r2' (1 - s )/ s = ∞, что соответствует работе двигателя в режиме х.х. Если же нагрузочный момент на валу двигателя превышает его вращающий момент, то ротор останавливается (s=1). При этом r2'(1 - s )/ s = О, что соответствует режиму к.з. асинхронного дви­гателя.

Более удобной для практического применения является Г- образная схема замещения (рис. б), у которой намагничиваю­щий контур (Zm = rm+ j xm) вынесен на входные зажимы схемы замещения. Чтобы при этом намагничивающий ток I0 не изменил своего значения, в этот контур последовательно включают сопро­тивления обмотки статора r1 и х1. Полученная таким образом схе­ма удобна тем, что она состоит из двух параллельно соединенных контуров: намагничивающего с током 0 и рабочего с током - 2. Расчет параметров рабочего контура Г-образной схемы заме­щения требует уточнения, что достигается введением в расчетные формулы коэффициента с1, представляющего собой отношение напряжения сети U1 к ЭДС статора Е1 при идеальном холостом ходе (s = 0). Так как в этом режиме ток холостого хода асинхронного двигателя весьма мал, то U1 оказывается лишь немногим больше, чем ЭДС Е1, а их отношение с1 =U1/ E1 мало отличается от единицы.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]