
- •Введение. Поверхность.
- •Лекция 1. Введение.
- •Поверхность.
- •1.1. Генерация электронных потоков.
- •1.2 Процессы при взаимодействии электронов с поверхностью твердого тела.
- •1.2.8.3. Истинно вторичные электроны.
- •2.1. Источники потоков атомов, молекул и радикалов (нч).
- •2.2. Процессы при взаимодействии атомов, молекул и радикалов с поверхностью.
- •2.3. Применение процессов взаимодействия нч с поверхностью
- •3.1. Источники ионных потоков.
- •3.2. Процессы при взаимодействии ионов с поверхность твердого тела.
- •4.1. Алгоритмы управления
- •4.2. Системы управления
- •Раздел 5. Взаимодейсвие плазмы с поверхностью.
- •5.1. Общие представления и терминология физики плазмы.
- •5.2. Элементарные процессы в низкотемпературной плазме.
- •5.4. Генераторы плазмы.
- •6.1.Углеродные нанотрубки.
- •6.2. Способы получения унм
- •5.3. Синтез наноструктур с использованием аппаратуры стм и смас
- •5.4. Нанокристаллические металлические материалы:
- •5.5 Синтез, свойства и перспективы нанокристаллических полупроводников
5.4. Нанокристаллические металлические материалы:
По мере того, как размер вещества (материала) уменьшается до нанометрового масштаба, материал приобретает необычные интересные механические и физические свойства: увеличивается механическая прочность, возрастает удельная теплоемкость и электрическое сопротивление, повышаются диффузионные характеристики и т.д.
Наноматериалы можно классифицировать как нанокристаллические материалы и наночастицы, которые могут служить, например, для создания одноэлектронных устройств или компактируемых компаундных материалов. Основой нанокристаллического объемного материала являются зерна нанометрового размера (менее 100 нм). В случае наночастиц –это ультратонкие наночастицы размером менее 100 нм. Наночастицы являются строительными блоками для создания компактированных нанокристаллических объемных материалов.
Имеется несколько направлений, которые предназначены для использования в технических областях. Эти направления включают в себя синтез высокочистых материалов со значительным экономическим эффектом, характеризацию новых структур и свойств нанофазных материалов, производство изделий и материалов из наночастиц с полной и частично не полной плотностью и высокими механическим свойствами.
Наночастицы, синтезированные разными методами, могут иметь различную внутреннюю структуру, что оказывает существенное влияние на свойства скомпактированных из них материалов. Превращение наночастиц в объемный продукт с размером зерна, который остается в нанометровом масштабе, на практике часто является трудно разрешимой задачей. Трудности связаны с наличием высокой удельной поверхности наночастиц, высокой реакционной способности и склонностью к агломерации. При высоких температурах имеет место быстрый рост размера зерна.
Необычные свойства нанокристаллических материалов обусловлены большой площадью поверхности межзеренных границ по сравнению с обычными поликристаллическими аналогами. В нанокристаллических твердых телах значительная часть атомов (порядка 40 %) является граничными атомами.
В нанокристаллических материалах усиливается крип и наблюдается сверхпластичность при высоких скоростях деформации и низких температурах. Последние явления вызывают практический интерес в связи с существенным снижением усилий при штамповке деталей сложной формы. Нанокристаллические покрытия с размером зерна в области нанометров, как известно, являются сверхтвердыми и прочными.
Структура частиц и методы получения.
Одной из важнейших характеристик наночастиц является высокое аспектное отношение поверхности к объему, которое показывает, что значительная часть атомов расположена на поверхности Поверхностные атомы обладают более высокими энергетическими характеристиками, они являются более реактивными и определяют адсорбционные явления. Большое аспектное отношение поверхности к объему в сочетании с ультрамалыми размерами и часто с эффектами формы приводит к тому, что свойств наночастиц становятся отличными от свойств объемного материала.
Первоначально наночастицы строятся в виде полнозаполненных атомами кластеров, имеющих кубическую или гексагональную плотноупакованную структуру. Такие кластеры могут быть построены от центрального атома, окруженного первой оболочкой, состоящей из 12 атомов, второй – 42 и третьей – 92 атомов и т.д. Число атомов в n-й оболочке составляет (10 · n2 + 2) (см. табл. 4.1). Координационное число (к. ч.), число ближайших соседей поверхностных атомов, 9 или меньше, тогда как для объемных структур к. ч. равно 12.
С уменьшением размера наночастиц процент поверхностных атомов увеличивается. Критическая роль размера наночастиц в физических свойствах экспериментально продемонстрирована на температуре плавления. Температура плавления золота резко уменьшается от 1063 до 300 °С при уменьшении диаметра частиц от 5 до 2 нм.
Частицы различаются не только плотноупакованными поверхностными слоями атомов, но и электронной структурой, связями и химической реактивностью. Контролирование размеров, формы и структуры металлических частиц является очень важной технологической проблемой, потому что имеется сильная корреляция между этими параметрами и оптическими, электрическими и каталитическими свойствами. Многие металлы можно теперь получить в виде монодисперсных наночастиц с контролируемым составом и структурой. Они могут производиться в больших количествах методами твердофазных растворов. Получение других, менее стабильных морфологий достигается добавлением химических реагентов в синтетические системы. Например, форма и размер платиновых частиц имеющих кубическую, тетраэдральную и октаэдральную структуру, можно контролировать путем изменения отношения концентрации покрывающего полимерного материала (натриевого полиакрилата) к концентрации ионов Pt, используемых в восстановительном синтезе коллоидных частиц в растворе при комнатной температуре.
Наиболее распространенным методом получения наночастиц является конденсация из паровой фазы. Этот метод достаточно гибок и позволяет приготавливать материал в виде тонких пленок с контролем структуры на наномасштабном уровне. Физическое осаждение пара (ФОП) включает в себя образование паровой фазы путем термического, катодного, ионно-лучевого испарения или лазерной абляции. В состояние пара вещество переходит при действии тепловой, электронной или лазерной энергии. Термический нагрев имеет ограничения на многокомпонентные материалы, поскольку элементарные компоненты обладают сильно различающейся упругостью паровой фазы и поэтому в паровую фазу переходят элементы с низкой упругостью паров. В этом отношении выгодно отличается метод катодного распыления, позволяющий распылять и осаждать материалы с высокой температурой плавления (тугоплавкие материалы и керамика), которые трудно получать, используя термическое испарение. Тем не менее, термическое испарение с последующей конденсацией в инертном газе наиболее часто используется для производства металлических и металлооксидных нанопорошков с узким распределением по размерам.
Металл испаряется в камере, которая обычно заполняется разреженным гелием. Пары из нагретых источников попадают в охлаждающий газ путем конвективных потоков и диффузии. Испаряемые атомы теряют свою энергии за счет взаимодействия с атомами гелия. Длина свободного пробега уменьшается, за счет чего достигается пересыщение, которое является началом образования большого количества зародышей. Рост зародышей происходит путем коалесценции и агломерации.
Размер, морфология и выход годных кластеров при конденсации из газа зависят от трех фундаментальных причин: 1) расхода атомов в области конденсации при пересыщении; 2) расхода энергии, которую необходимо удалить от горячего атома в газовую среду в процессе конденсации; 3) скорости удаления кластеров, зарождающихся в сверхпересыщенной области. Кроме того, зарождение частиц, коалесценция и рост в течение конденсации также играют ключевую роль в формировании малых частиц в большом количестве. Однако надо признать, что при конденсации в газовой (инертной) среде выход годного нанопродукта достаточно низок.
Образование наночастиц при использовании катодного распыления в охлаждающем газе зависит от таких параметров процесса, как давление газа, мощность источника катодного распыления и расстояние до распыляемой мишени. Указанные параметры должны быть в достаточной степени разделены, чтобы достигнуть формирования наночастиц в более значительной степени, чем при образовании гранулированных пленок. Гонсалес использовал катодное распыление и конденсацию в газе, чтобы получить наночастицы Mo, MoNi и MoW. Было показано, что размер частиц сильно зависит от давления аргона для всех полученных таким образом частиц. Средний размер частиц Mo уменьшался от 12 нм при давлении аргона 0,4 Мбар до 5 нм при давлении 0,8 мбар. При низких давлениях аргона из Mo и MoNi формируется продукт в виде хорошо разделенных частиц, тогда как при более высоких давлениях образуются цепочки хорошо фасетированных кубических кристалликов, и имеет место процесс коалесценции в течение процесса образования частиц.
Известно, что использование лазерной абляции позволяет улучшить контроль процесса испарения за счет конгруэнтного испарения элементов, содержащихся в многокомпонентных материалах. Путем облучения импульсным лазерным лучом многокомпонентной или компаундной мишени можно добиться получения наночастиц сложных соединений, поэтому лазерная абляция в сочетании с конденсацией в инертном газе весьма привлекательна для получения большого количества многокомпонентных нанокристаллических материалов. Этот метод был разработан для синтеза интерметаллического соединения NbAl3 с использованием эксимерного лазерного источника. Схема экспериментальной установки представлена на рис. 4.9. Лазерная абляция атомов осуществлялась импульсным лазером, в результате, атомы вещества при столкновении с атомами гелия быстро теряют кинетическую энергию. Атомы, таким образом, имели возможность конденсироваться в форме клубков, содержащих нанокристаллические материалы. Лазерная абляция и конденсация в газе могут быть использованы для получения наночастиц металлов, оксидов и карбидов металлов.
Наночастицы для практического использования
Результаты, связанные с достижением твердых покрытий, получены на нитридах переходных металлов, таких как TiN, CrN, VN и ZrN. Они имеют отличные химические и физические свойства. Так, например, TiN устойчив к окислению при температурах не выше 500 °С. При более высоких температурах начинается формирование тонкого слоя TiO2 на поверхности TiN. Более высокую защиту от окисления имеет CrN благодаря формированию плотного и пассивирующего слоя Cr2O3, который защищает от дальнейшего окисления. Основным методом получения нитридных покрытий является
ионно-лучевое осаждение.
Малые частицы используют при производстве различных авиационных материалов, например, радиопоглощающих керамик, в матрице которых беспорядочно распределены металлические частицы. Керамические наноматериалы широко используются для изготовления деталей, работающих при повышенных температурах, неоднородных термических нагрузках и в агрессивных средах. Такие материалы сверхпластичны, что позволяет получать из них изделия сложной конфигурации с высокой точностью размеров, например, для аэрокосмической техники. Нанокерамику на основе гидроксиапатита благодаря биосовместимости и высокой прочности используют в ортопедии для изготовления искусственных суставов и в стоматологии для изготовления зубных протезов. Гидротермальный синтез позволяет получать оксидную нанокерамику TiO2, ZrO2, HfO2, в том числе в виде нанопрутков. Нанокристаллические порошки диоксидов титана, циркония и гафния и композиции на их основе находят свое применение в качестве катализаторов, газовых сенсоров, диэлектрической керамики, красителей, твердых электролитов, диффузионных барьеров и оптических покрытий.
ЛЕКЦИЯ 16.