Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
КСЕ тема 5.doc
Скачиваний:
9
Добавлен:
15.12.2018
Размер:
1.32 Mб
Скачать

5.5.3. Квантово-механическая концепция описания микромира

Теоретическое исследование свойств электромагнитных волн привели Максвелла к созданию электромагнитной теории света, в соответствии с которой свет представляет собой также электромагнитные волны. Электромагнитные волны были впервые обнаружены немецким физиком Г. Герцем (1857-1894), доказавшим, что законы их возбуждения и распространения полностью описываются уравнениями Максвелла.

Однако теория Максвелла не смогла объяснить процессы испускания и поглощения света, фотоэлектрического эффекта, комптоновского рассеяния и т.д. Теория Лоренца в свою очередь не смогла объяснить многие явления, связанные с взаимодействием света с веществом, в частности вопрос о распределении энергии по длинам волн при тепловом излучении абсолютно черного тела. Перечисленные затруднения и противоречия были преодолены благодаря гипотезе, высказанной в 1900 г. немецким физиком М. Планком, согласно которой излучение света происходит не непрерывно, а дискретно, т.е. определенными порциями (квантами). Теория Планка положила начало формирования квантово-механической картины мира.

5.5.5. Фотонная теория а. Эйнштейна

Идея Планка получила развитие в работах А.Эйнштейна, создавшего в 1905 году квантовую теорию света: не только излучение света, но и его распространение происходят в виде потока световых квантов - фотонов.

Он первым понял, что дискретность - свойство света, что электромагнитное поле - это поток квантов (фотонов). Эйнштейну удалось объяснить все экспериментальные данные, относящиеся к явлению фотоэффекта, испусканию веществом электронов под воздействием электромагнитного излучения.

Все многообразие изученных свойств и законов распространения света, его взаимодействия с веществом показывает, что свет имеет сложную природу: он представляет собой единство противоположных свойств - корпускулярного (квантового) и волнового (электромагнитного).

5.5.6. Гипотеза Луи де Бройля о волновых свойствах материи

В результате углубления представлений о природе света выяснилось, что в оптических явлениях обнаруживается своеобразный дуализм. Наряду с такими свойствами света, которые самым непосредственным образом свидетельствуют о его волновой природе (интерференция, дифракция), имеются и другие свойства, столь же непосредственно обнаруживающие его корпускулярную природу (фотоэффект, явление Комптона).

В 1924 г. выдающийся французский физик Луи де Бройль(1892-1987) выдвинул гипотезу о том, что двойственность не является особенностью одних только оптических явлений, но имеет универсальное значение.

По де Бройлю, движение электрона или какой-либо другой частицы связано с волновым процессом, характеризующимся длиной волны X, которая связана с импульсом частицы р.

Луи де Бройль определил длину волны микрочастицы по аналогии с длиной волны фотона.

5.5.7. Концепция корпускулярно-волнового дуализма

Гипотеза о всеобщем дуализме частицы и волны, выдвинутая Луи де Бройлем, позволила построить теорию, охватывающую свойства материи и света в их единстве. Кванты света становились при этом особым моментом всеобщего строения микромира.

В конце XVII в. почти одновременно возникли две, казалось бы, взаимоисключающие теории света: И. Ньютон предложил теорию, согласно которой свет представляет собой поток световых частиц (корпускул), летящих от светящегося тела по прямолинейным траекториям; X. Гюйгенс (1629-1695) вдвинул волновую теорию, рассматривающую свет как упругую волну, распространяющуюся в мировом эфире.

В течение ста с лишним лет корпускулярная теория имела гораздо больше приверженцев, чем волновая. Однако в начале XIX в. французскому физику О.Ж. Френелю (1788-1827) удалось на основе волновых представлений выявить все известные в то время оптические явления.

В результате волновая теория света получила всеобщее признание, а корпускулярная теория была забыта почти на столетие.

В конце XIX-начале XX вв. ряд новых опытов заставил вновь вернуться представлению об особых световых частицах - фотонах. Было установлено, что свет имеет двойственную природу, сочетая в себе как волновые свойства, так и свойства, присущие частицам.

В одних явлениях, таких как интерференция, дифракция и поляризация, свет ведет себя, как волна, в других фотоэффект - как поток частиц (фотонов).

По современным представлениям свет имеет двойственную корпускулярно-волновую природу: в одних случаях он ведет себя как электромагнитная волна, в других - как поток особых частиц или корпускул.

Согласно современным представлениям электромагнитная природа света - это лишь одна разновидность проявления света. Другая разновидность характеризуется его квантовой природой.