Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Вопросы_экзамен по ИТБ.docx
Скачиваний:
19
Добавлен:
11.12.2018
Размер:
389.65 Кб
Скачать

Основные понятия er-модели

Основными понятиями ER-модели являются сущность, связь и атрибут. Сущность – это реальный или представляемый объект, информация о котором должна сохраняться и быть доступной.1) В диаграммах ER-модели  сущность представляется в виде прямоугольника, содержащего имя сущности. При этом имя сущности – это имя типа, а не некоторого конкретного экземпляра этого типа.2) Для большей выразительности и лучшего понимания имя сущности может сопровождаться примерами конкретных экземпляров этого типа.

Пример типа сущности

На изображена сущность  АЭРОПОРТ с примерными экземплярами «Шереметьево» и «Хитроу». Эта примитивная диаграмма тем не менее несет важную информацию. Во-первых, она показывает, что в базе данных будут содержаться однотипные структуры данных (экземпляры сущности), описывающие аэропорты. Во-вторых, поскольку в жизни существует несколько точек зрения на аэропорты (например, точка зрения пилота, точка зрения пассажира, точка зрения администратора) и этим точкам зрения соответствуют разные структуры данных, то приведенные примеры аэропортов позволяют несколько сузить допустимый набор точек зрения. В нашем случае приведены примеры международных аэропортов, так что, скорее всего, имеется точка зрения пассажира или пилота международных авиарейсов.

При определении типа сущности необходимо гарантировать, что каждый экземпляр сущности может быть отличим от любого другого экземпляра той же сущности. Это требование в некотором роде аналогично требованию отсутствия кортежей-дубликатов в реляционных таблицах.

Связь – это графически изображаемая ассоциация, устанавливаемая между двумя типами сущностей. Как и сущность, связь – это типовое понятие, все экземпляры обоих связываемых типов сущностей подчиняются устанавливаемым правилам связывания. Поэтому правильнее говорить о типе связи, устанавливаемой между типами сущности, и об экземплярах типа связи, устанавливаемых между экземплярами типа сущности.3) В обсуждаемом здесь варианте ER-модели эта ассоциация всегда является бинарной и может существовать между двумя разными типами сущностей или между типом сущности и им же самим (рекурсивная связь). В любой связи выделяются два конца (в соответствии с существующей парой связываемых сущностей), на каждом из которых указываются имя конца связи, степень конца связи (сколько экземпляров данного типа сущности должно присутствовать в каждом экземпляре данного типа связи), обязательность связи (т. е. любой ли экземпляр данного типа сущности должен участвовать в некотором экземпляре данного типа связи).

Как и в случае схем реляционных баз данных, для ER-диаграмм вводится понятие нормальных форм, причем их смысл очень близко соответствует смыслу нормальных форм отношений. Заметим, что определения нормальных форм ER-диаграмм делают более понятным смысл нормализации схем отношений. Мы приведем только очень краткие и неформальные определения трех первых нормальных форм.

Физические модели баз данных

Физические модели баз данных определяют способы размещения данных в среде хранения и способы доступа к этим данным, которые поддерживаются на физическом уровне. Исторически первыми системами хранения и доступа были файловые структуры и системы управления файлами (СУФ), которые фактически являлись частью операционных систем. СУБД создавала над этими файловыми моделями свою надстройку, которая позволяла организовать всю совокупность файлов таким образом, чтобы она работала как единое целое и получала централизованное управление от СУБД. Однако непосредственный доступ осуществлялся на уровне файловых команд, которые СУБД использовала при манипулировании всеми файлами, составляющими хранимые данные одной или нескольких баз данных.

Однако механизмы буферизации и управления файловыми структурами не приспособлены для решения задач собственно СУБД, эти механизмы разрабатывались просто для традиционной обработки файлов, и с ростом объемов хранимых данных они стали неэффективными для использования СУБД. Тогда постепенно произошел переход от базовых файловых структур к непосредственному управлению размещением данных на внешних носителях самой СУБД. И пространство внешней памяти уже выходило из-под владения СУФ и управлялось непосредственно СУБД. При этом механизмы, применяемые в файловых системах, перешли во многом и в новые системы организации данных во внешней памяти, называемые чаще страничными системами хранения информации.

Файловая структура и система управления файлами являются прерогативой операционной среды, поэтому принципы обмена данными подчиняются законам операционной системы. По отношению к базам данных эти принципы могут быть далеки от оптимальности. СУБД подчиняется несколько иным принципам и стратегиям управления внешней памятью, чем те, которые поддерживают операционные среды для большинства пользовательских процессов или задач.

Это и послужило причиной того, что СУБД взяли на себя непосредственное управление внешней памятью. При этом пространство внешней памяти предоставляется СУБД полностью для управления, а операционная среда не получает непосредственного доступа к этому пространству.

Физическая организация современных баз данных является наиболее закрытой, она определяется как коммерческая тайна для большинства поставщиков коммерческих СУБД. И здесь не существует никаких стандартов, поэтому в общем

случае каждый поставщик создает свою уникальную структуру и пытается обосновать ее наилучшие качества по сравнению со своими конкурентами. Физическая организация является в настоящий момент наиболее динамичной частью СУБД. Стремительно расширяются возможность устройств внешней памяти, дешевеет оперативная память, увеличивается ее объем и поэтому изменяются сами принципы организации физических структур данных. И можно предположить, что и в дальнейшем эта часть современных СУБД будет постоянно меняться. Поэтому при рассмотрении моделей данных, используемых для физического хранения и обработки, мы коснемся только наиболее общих принципов и тенденций.

При распределении дискового пространства рассматриваются две схемы структуризации: физическая, которая определяет хранимые данные, и логическая, которая определяет некоторые логические структуры, связанные с концептуальной моделью данных.

Классификация объектов при статичной организации физической модели данных

Чанк (chank) — представляет собой часть диска, физическое пространство на диске, которое ассоциировано одному процессу (online процессу обработки данных).

Чанком может быть назначено неструктурированное устройство, часть этого устройства, блочно-ориентированное устройство или просто файл UNIX.

Чанк характеризуется маршрутным именем, смещением (от физического начала устройства до начальной точки на устройстве, которая используется как чанк), размером, заданным в Кбайтах или Мбайтах.

При использовании блочных устройств и файлов величина смещения считается равной нулю.

Логические единицы образуются совокупностью экстентов, то есть таблица моделируется совокупностью экстентов.

Экстент — это непрерывная область дисковой памяти.

Для моделирования каждой таблицы используется 2 типа экстентов: первый и последующие.