Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Metod_posobie_po_BIOLOGII.doc
Скачиваний:
45
Добавлен:
08.12.2018
Размер:
9.95 Mб
Скачать
  1. Питание клетки. Фагоцитоз и пиноцитоз.

Любая живая клетка питается, т.е. захватывает из внешней среды питательные вещества (в виде отдельных молекул или больших групп молекул - пищевых частиц, иногда даже целых клеток меньшего размера), и так или иначе использует эти вещества.

Есть всего два принципиально различных варианта использования питательных веществ.

  1. Молекулы питательных веществ можно использовать для построения других молекул, выполняющих в жизни клетки какие-то функции, например, молекул, входящих в состав клеточной мембраны. Этот вариант использования клеткой питательных веществ называется ассимиляцией.

  2. Другой вариант – получение энергии, которая при этом выделяется и используется клеткой, например, для передвижения или для захвата новых пищевых частиц. Такой вариант использования веществ называется диссимиляцией.

Для переноса воды и различных ионов в клеточной мембране существуют поры, через которые они пассивно поступают в клетку. Кроме того, существует активный перенос веществ в клетку с помощью специальных белков, входящих в состав плазматической мембраны. Он осуществляется также на основе процессов фагоцитоза и пиноцитоза

Фагоцитоз ("фагос" - "пожиратель", "цитос" - "клетка") - питание клетки сравнительно большими пищевыми частицами (в том числе другими клетками). Общая картина фагоцитоза показана на рис. 9.

Рисунок 9- Фагоцитоз. Пиноцитоз. Рецепторный эндоцитоз

Проплывающая мимо клетки пищевая частица касается мембраны и прилипает к ней. Мембрана под ней прогибается, охватывая частицу со всех сторон. В результате образуется мембранный пузырек с частицей внутри - пищеварительная вакуоль. Она отрывается от мембраны и уплывает вглубь цитоплазмы. Там она сливается с другим пузырьком (первичной лизосомой, отделившимся от комплекса Гольджи. Пузырек - результат этого слияния - называют вторичной лизосомой. После этого пищевая частица начинает растворяться. Минут через 20 внутри вторичной лизосомы виднеются только несколько маленьких бесформенных кусочков, почему-то "не захотевших" растворяться. Затем вторичная лизосома подплывает к мембране клетки и сливается с ней, выбрасывая из клетки наружу эти "кусочки" (рисунок 20).

Другой вариант, гораздо более приемлемый для многоклеточных животных – вторичная лизосома выбрасывает непереваренные остатки в специальную вакуоль накопления на «вечное хранение».

Все эти удивительные превращения происходят благодаря деятельности специальных молекул. Специальные молекулы мембраны клетки (рецепторы), обеспечивают прилипание пищевой частицы к мембране и образование пищеварительной вакуоли. Рецепторы - это молекулы мембраны клетки, которые могут узнавать другие молекулы (лиганды), и прочно к ним прилипать. Коснувшаяся мембраны частица прилипает в том случае, если на ее поверхности имеются лиганды к каким-нибудь рецепторам, имеющимся на поверхности клетки (на мембране обычно имеется около 100 различных разновидностей рецепторов, и каждый из них "узнает" определенный лиганд).

В случае, когда клетка захватила с помощью фагоцитоза другую маленькую клетку, первичная лизосома приносит из комплекса Гольджи специальные молекулы (пищеварительные ферменты), умеющие "разрезать" большие молекулы (полимеры) на части. Из-за этого органоиды захваченной клетки "разваливаются" на отдельные мелкие молекулы. В мембране вторичной лизосомы имеются также белки-переносчики, которые умеют переносить эти мелкие молекулы через мембрану в цитоплазму клетки.

Пиноцитоз (греч. "pino" - пить) - процесс захвата и поглощения капелек жидкости с растворенными в ней веществами. Пиноцитоз напоминает фагоцитоз, но фагоцитоз широко распространен у животных, а пиноцитоз осуществляется как растительными, так и животными организмами.

Клеточная стенка растений, бактерий и цианобактерий препятствует фагоцитозу и поэтому фагоцитоз у них практически отсутствует.

Как бы ни были сходны животная и растительная клетки –между ними имеются значительные отличия. Основным отличием является отсутствие в растительной клетке клеточного центра с центриолями, который имеется в животной клетке и вакуолей с водой, которые занимают достаточно большое пространство в клетке и обеспечивают этим тургор растений.

Существенным отличием названных клеток является присутствие в растительной клетке хлоропластов, которые обеспечивают фотосинтез растений и другие функции.

На рисунке можно легко обнаружить отличия животной и растительной клеток.

Рисунок 25 – Отличия животной и растительной клетки

В таблице 2 представлены отличительные признаки растительных и животных клеток.

Таблица 3 – Отличительные признаки растительных и животных клеток

Признак

Растительная клетка

Животная клетка

Пластиды

Хлоропласты, хромопласты, лейкопласты

Отсутствуют

Способ питания

Автотрофный (фототрофный)

Гетеротрофный (голозойный, сапрофитный, паразитический)

Синтез АТФ

В хлоропластах, митохондриях

В митохондриях

Расщепление АТФ

В хлоропластах и во всех частях клетки, где необходима затрата энергии

Во всех частях клетки, где необходима затрата энергии

Клеточный центр

У некоторых низших растений

Во всех клетках

Целлюлозная клеточная стенка

Расположена снаружи от клеточной мембраны

Отсутствует, имеется гликопротеидный слой - гликокаликс

Вакуоли

Крупные полости, заполненные клеточным соком – водным раствором различных веществ, являющихся запасными или конечными продуктами, осматические резервуары клетки

Сократительные, пищеварительные, выделительные вакуоли (обычно мелкие)

ТЕМА: ТКАНЕВЫЙ УРОВЕНЬ

Тканевый уровень представлен тканями, объединяющими клетки определенного строения, размеров, расположения и сходных функций. Ткани возникли в ходе исторического развития вместе с многоклеточностью. У многоклеточных организмов они образуются в процессе онтогенеза как следствие дифференциации клеток. У животных различают несколько типов тканей (эпителиальная, соединительная, мышечная, нервная, а также кровь и лимфа). У растений различают меристематическую, защитную, основную и проводящую ткани. На этом уровне происходит специализация клеток.

Функции, выполняемые животным организмом, очень разнообразны, поэтому и клетки в нем построены неодинаково. По внешним, или морфологическим, призна­кам можно выделить однородные группы клеток, из которых как бы соткан организм; отсюда произошло название ткани, т. е. различные группы клеток. Каждая группа однородных клеток выполняет определенную функцию и обладает особыми, только ей присущими качествами.

Ни одна из тканей не является независимой, изолированной группой однородных клеток. Только при самой тесной работе всех клеток как частей целого организма возможна их жизнь.

На основании особенностей строения и функции клеток различают следующие ткани: эпителиальную, соединительную, мышечную и нервную.

1. Эпителиальная ткань.

Эпителиальная ткань, или эпителий, характеризуется тем, что клетки располагаются в нем целыми рядами, одна возле другой. Эпителий очень распространен в сложном организме. Он покрывает поверхность тела животного, полости и органы, выполняющие различную физиологическую роль в организме. Эпителий защищает внутренние ткани, и проникнуть к этим тканям можно, только нарушив эпителий.

Функциональное значение эпителия разнообразно, и построен он в различных местах тела неодинаково. Там, где клетки эпителия располагаются в один ряд, он называется однослойным; там, где ряды клеток наслаиваются один на другой, – многослойным.

Различают однослойный цилиндричский эпителий, который, в свою очередь, делится на мерцательный, каемчатый и железистый, а также многослойный эпителий.

Мерцательный эпителий покрывает дыхательные пути, яйцеводы и характеризуется наличием тонких подвижных нитей на свободном конце клеток, называемых ресничками. Они постоянно двигаются в одну сторону, вследствие чего из дыхательных путей выделяются мокрота, различные посторонние частицы, а в яйцеводах происходит перемещение яйцевой клетки в матку.

Каемчатый, или кишечный, эпителий покрывает внутреннюю поверхность кишечника. На свободном конце клеток этого эпителия имеется особое приспособление – кайма, или кутикула, при помощи которой в стенки кишечника всасываются растворенные в воде питательные вещества.

Железистый эпителий находится главным образом в железах. Клетки железистого эпителия выделяют специальную жидкость, называемую секретом. Форма и строение железистых клеток очень разнообразны, как и выделяемый ими секрет.

Многослойный эпителий в зависимости от формы клеток подразделяют на: 1) многослойный цилиндрический, встречающийся редко, главным образом в выводных протоках желез; 2) многослойный переходный, отличающийся большой растяжимостью и выстилающий полости, сильно изменяющие свой объем (например, полость мочевого пузыря); 3) многослойный плоский, состоящий из плоских клеток, которые ороговевают. Он покрывает снаружи тело животного, выстилает внутри ряд органов (полость рта, глотку, пищевод и др.), являясь защитным эпителием.

2. Соединительные ткани

Рисунок 26 - Строение плотной соединительной ткани: 1 - коллагеновые волокна; 2 - ядро; 3 - клетки: 4 - эластиновые волокна

Соединительные ткани распространены по всему организму. Они связывают различные части тела между собой. Соединительные ткани подразделяются на две основные группы: ткани питающие (трофические) и опорные (механические).

Кровь и лимфа по своему происхождению относятся к трофической группе соединительной ткани. В состав крови входят плазма и форменные элементы.

Плазма представляет собой жидкую часть крови и состоит из воды, неорганических и органических веществ. Одни из них являются питательным материалом для клеток, другие – продуктами обмена веществ, подлежащими удалению из организма.

В крови, находящейся вне организма, плазма свертывается, причем выпадает белковое вещество – фибрин, образующий тромб. Способность крови образовывать тромб предохраняет от кровотечений при нарушении целостности кровеносного сосуда.

Жидкость, остающаяся после удаления фибрина, называется кровяной сывороткой.

К группе механических соединительных тканей относятся хрящевая и костная ткани.

Хрящевая ткань встречается там, где требуется большая упругость (остов дыхательного аппарата), или там, где необходимо смягчать толчки и сотрясения (на концах костей в суставах).

3. Костная ткань

Рисунок 27 - Строение костной ткани: 1 - костная клетка (остеоцит); 2 - ядро; 3 - межклеточное вещество

Костная ткань – самая прочная в организме. В ней, кроме органических соединений, много минеральных веществ, а именно фосфорно-кальциевых солей. Это придает костной ткани большую крепость, а наличие органических веществ – упругость.

Кость пронизана каналами, через которые проходят кровеносные и лимфатические сосуды, а также нервные волокна. Стенки костей состоят из сплошного компактного вещества, а внутри кость построена из губчатого вещества, пустые пространства которого заполнены костным мозгом.

Кроме того, существует волокнистая соединительная ткань, выполняющая, помимо опорной, и трофическую функцию, так как в ее межклеточных щелях циркулируют питательные вещества. Волокнистая соединительная ткань бывает рыхлой, плотной и эластической. Рыхлая соединительная ткань залегает под кожей между мускулами и служит для соединения и образования остова отдельных органов. Плотная соединительная ткань встречается в сухожилиях, связках и других органах и отличается от рыхлой плотностью и прочностью. Эластическая соединительная ткань характеризуется большим количеством эластических волокон, прочностью, достаточной упругостью; встречается она в различных связках и крупных кровеносных сосудах.

4. Хрящевая ткань

Рисунок 28 - Строение хрящевой ткани: 1 - межклеточное вещество; 2 - клетка; 3 – ядро

5. Мышечная ткань

Мышечная ткань имеет своеобразные клетки, сильно вытянутые в длину, почему они и получили название мышечных волокон. Различают гладкую и поперечнополосатую мышечную ткань

Рисунок 29 - Строение мышечной ткани: 1 - мышечная клетка (мышечное волокна); 2 - ядра; 3 - межклеточное вещество; 4 - волокно межклеточного вещества

Гладкая мышечная ткань сокращается независимо от воли животного. Она распространена во внутренних органах тела: пищеварительных, дыхательных и мочеполовых; в сосудах, в селезенке и т. д.

Поперечнополосатая мышечная ткань подразделяется на скелетную и сердечную. Скелетная мышечная ткань находится на тех частях скелета, которые участвуют в движении; она сокращается по произволу, почему ее и называют мышечной тканью произвольного движения. Сердечная мышечная ткань имеется в сердце и функционирует независимо от воли животного. Ее особенностью являются правильно чередующиеся сокращения, т. е. ритм.

6. Нервная ткань

Нервная ткань предназначена в организме для восприятия и передачи раздражений как внутри организма, так и при общении его с внешней средой. Через нервную ткань, животные воспринимают самые разнообразные ощущения: свет, цвет, запах, вкус, звук и пр.

ТЕМА: Организменный уровень развития живого

Онтогенез (от греч. ontos – существо, geneses – развитие) – это цикл развития индивидуального организма (животного или растения), начинающийся с образования давших ему начало половых клеток и заканчивающийся его смертью.

Онтогенез – индивидуальное развитие организма

Филогенез.- история возникновения и развития вида (животных или растений).

В Х1Х веке немецкими учеными Фрицем Мюллером и Эрнестом Геккелем был сформулирован биогенетический закон:

Онтогенез (индивидуальное развитие) каждой особи есть краткое и быстрое повторение филогенеза (исторического развития ) вида , к которому эта особь относится

Онтогенез в зависимости от характера развития организмов типируют на прямой и непрямой

Прямое развитие организмов в природе встречается в виде неличиночного и внутриутробного развития, тогда как непрямое развитие наблюдается в форме личиночного развития.

1.Механизм роста и развития организмов.

Итак, после оплодотворения яйцеклетки начинается рост и развитие нового живого организма, который повторяет путь развития родителей – отца и матери. Это – очень сложный процесс и заключается во взаимодействии наследственности, полученной от родителей, и условий среды окружающей растущий организм.

Рост организма это постепенное увеличение его массы в результате увеличения количества клеток.

Рост можно измерить, построив на основе результатов измерений кривые размеров организма, массы, сухой массы, количества клеток, содержания азота и других показателей.

При этом иногда одни клетки становятся морфологически, биохимически и функционально отличными от других клеток. Размножение и дифференцировка одних клеток всегда координированы с ростом и дифференцировкой других. Оба эти процесса происходят на протяжении всего жизненного цикла организма. Поскольку дифференцирующиеся клетки изменяют свою форму, а в изменения формы вовлекаются группы клеток, то это сопровождается морфогенезом, который определяет структурную организацию клеток и тканей, а также общую морфологию организмов.

Таким образом, рост является результатом количественных изменений в виде увеличения количества клеток (массы тела) и качественных – в виде дифференцировки клеток и морфогенеза.

Развитие – это качественные изменения организмов, обеспечивающие в ходе онтогенеза прогрессивные изменения индивидов.

В рамках современных представлений развитие организма понимают в качестве процесса, при котором структуры, образовавшиеся ранее, побуждают развитие последующих структур. Учитывая также влияние факторов среды: Развитие определяется единством внутренних и внешних факторов.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]