Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ГІС і БД(М2).doc
Скачиваний:
21
Добавлен:
08.12.2018
Размер:
171.01 Кб
Скачать

10. Просторовий аналіз. Зонування території за допомогою полігонів Тіссена-Вороного.

Полігонами Тиссена-Вороного називаються багатокутники, побудовані навколо мережі точкових об'єктів таким чином, що для будь-якої позиції в межах полігонів відстань до центрального точкового об'єкта завжди менша, ніж до будь-якого іншого об'єкта мережі, що розглядається.

Побудова багатокутників (полігонів) Тиссена-Вороного на практиці є однією з основних операцій, що поділяють територію, яка розглядається, на сукупність районів, що визначають просторові асоціації і взаємодії. Цей вид аналізу широко використовується для розподілу поверхні на основі визначених користувачем критеріїв і атрибутів.

Як приклад можна навести завдання визначення ареалів поширення даних спостережень на мережі метеорологічних станцій, нерівномірно розміщених у межах розглянутої території (рис. 7.6).

Побудова полігонів Тиссена-Вороного є також основою одного з локально-детермінованих методів просторової інтерполяції точкових даних (див. п. 8.3.2). При цьому значення змінної в кожному вузлі мережі (наприклад, шар атмосферних опадів за даними спостережень метеорологічної станції) поширюються на всі комірки полігона, що оточує вузол.

Безумовним достоїнством методу є його простота і доступність реалізації практично у всіх ГІС-пакетах з розвиненими аналітичними можливостями. Проте слід пам'ятати, що на побудованій з використанням цього методу карті просторового розподілу змінної, що вивчається, остання зазнає розриву безперервності на межах полігонів, що, як правило, суперечить дійсності. До того ж характер змодельованого просторового розподілу значною мірою залежить від просторового розміщення вузлів мережі. У зв'язку з цим метод рекомендується для інтерполяції точкових значень при: а) відносно невеликому діапазоні змін даної змінної, б) просторовій однорідності умов формування її поля.

11. Подання цмр з використанням grid-поверхонь.

Найбільш поширеним різновидом цифрової моделі рельєфу, що використовується, є цифрове подання топографічної поверхні у вигляді растра (растрова ЦМР, сіткова ЦМР, grid DEM) (рис. 7.8а). Побудова ЦМР у цьому випадку полягає в поширенні наявного обмеженого набору точкових даних про відмітки топографічної поверхні в прилеглі комірки растра, що суцільно покриває дану територію, з використанням методів просторової інтерполяції.

Просторова інтерполяція точкових даних ґрунтується на виборі аналітичної моделі топографічної поверхні. У загальному випадку топографічна поверхня являє собою функцію двох змінних Z= f (X, У), задану в деяких точках досліджуваної області простору, кількість і взаємне розміщення яких можуть бути, як відзначено вище, різними. Завдання інтерполяції тут, як і завжди (див. п. 8.2), полягає в тому, щоб побудувати за цими даними цю функцію для всієї області, тобто задати алгоритм обчислення функції f(X, Y) у будь-якій точці з координатами X, Y. У зв'язку з неможливістю опису топографічної поверхні в межах усієї території однією функцією для просторової інтерполяції поверхонь з регулярним розміщенням опорних точок звичайно використовують методи локальної (або кускової) інтерполяції. Для визначення значення змінної в розглянутій точці (вузлі) використовується не вся сукупність наявних даних, а дані вимірювань у точках, що знаходяться в деякому околі цієї точки. При цьому використовують поліноміальну і сплайнову інтерполяцію із застосуванням в останньому випадку бікубічних сплай-нів. При нерегулярній схемі розміщення опорних точок використовується кускова поліноміальна інтерполяція з застосуванням як ортогональних, так і неортогональних поліномів, рядів Фур'є, аналітична сплайн-інтерполяція (з використанням D-сплайнів), ковзного зваженого осереднення і деякі інші методи. Як вагову функцію при ковзному зваженому осередненні часто використовують функцію А, обернено пропорційну відстані від розглянутої точки до опорної в деякому ступені r (A = ldr). Найбільш часто застосовується на практиці значення r=2, тобто використовується процедура просторової інтерполяції, яка називається методом обернено-квадратичної дистанції. Хороші результати дають локально-стохастичні методи просторової інтерполяції, відомі під назвою «кригінг-інтерполяція», чи просто «кригінг» (див. п. 8.4). Метод ґрунтується на врахуванні закономірностей статистичної структури просторового розподілу розглянутої змінної, завдяки чому має перевагу порівняно з локальними детермінованими методами, до яких належать методикускової поліноміальної і сплайнової інтерполяції і ковзного осереднення. Серед переваг відзначимо можливість обґрунтування величини радіуса околу розглянутої точки, що повинна враховуватися при інтерполяції, вигляду вагової функції, а також можливість оцінки точності просторової інтерполяції.

Кількість використовуваних методів аналітичного опису топографічних поверхонь, покладених в основу просторової інтерполяції даних опорних точок і побудови цифрових моделей, як випливає навіть із наведеного короткого огляду, досить велика. При цьому результати просторової інтерполяції різними методами відрізняються один від одного, іноді досить суттєво. Окрему проблему складає вибір розміру комірки растра, що визначає ступінь генералізації рельєфу при його моделюванні.

Оцінка адекватності того чи іншого способу побудови ЦМР, вибір оптимального з них для даного характеру рельєфу і суті розв'язуваних завдань у більшості випадків повинні ґрунтуватися на результатах зіставлення реального рельєфу (або його картографічного подання) і побудованих цифрових моделей. Тільки локально-статистичні методи просторової інтерполяції (кри-гінг-інтерполяція) дозволяють одержати незалежну оцінку точності інтерполяції в кожній точці даної території, що ґрунтується на законі просторового розподілу відміток топографічної поверхні.