
- •Качественные данные. Шкала классификации (номинальная).
- •Порядковые данные. Шкала порядка.
- •Количественные данные. Шкала интервалов и шкала отношений.
- •Статистический анализ данных.
- •Функция распределения
- •Законы распределения дискретных случайных величин
- •Биномиальное распределение (распределение Бернулли)
- •Распределение Пуассона
- •Законы распределения непрерывных случайных величин
- •Нормальный закон распределения (Гаусса)
- •Распределение
- •Распределение Стьюдента (Госсета)
- •Эмпирические законы распределения случайных величин
- •Практические задания.
-
Качественные данные. Шкала классификации (номинальная).
Никакие операции сравнения качественных данных, кроме «равняется» и «не равняется», не возможные. Качественные данные описываются номинальными категориями (например, пол, цвет волос, группа крови и т.п.). Номинальные сменные – наблюдение, классифицированные в одну из целого ряда взаимоисключающих категорий. Например, человек может иметь лишь одну из четырех групп крови (I, II, III, IV).
-
Порядковые данные. Шкала порядка.
Возможное сравнение объектов за величиной - «больше» или «меньше». Другие операции невозможные. Порядковые данные представляют колебания (например, стадии болезни, социальный статус, развитие ребенка и т.п.). Соответствующие наблюдения могут быть представлены упорядоченными категориями такими, как “хорошо”, “среднее” и “плохо”.
Порядковые данные являются субъективными в измерении. Это обусловлено размещением данных об индивидууме в одной из категорий. Например, болезнь человека может быть описана категориями как легкая, средняя или тяжелая форма болезни. Существует определенные трудности в определении попадания признака, который изучается, в ту или другую категорию. Например, сравнивая состояние больного, мы можем определить тяжелое состояние и отдифференцировать его от среднего, в то время когда разность между легким и средним состоянием менее очевидная. Найти среднее значение порядковых данных невозможно, например, найти средний уровень болезни.
-
Количественные данные. Шкала интервалов и шкала отношений.
В шкале интервалов возможное не только сравнение по величине, но и определение «на сколько больше» (т.е. возможные операции «сложение» и «вычитание»). Что же касается шкалы отношений, то здесь возможное выяснение вопроса «в сколько раз» (т.е. выполняются все операции: «сравнение», «сложение», «вычитание», «умножение» и «деление»)
Количественными данными представляют результаты вычисления или измерения
-
дискретные данные (категоричные данные) представляют результаты вычислений исследования (например, количество клеток крови, количество больных и т.п.);
-
непрерывные данные представляют результаты измерений исследования (например, данные биопотенциалов мозга, электрокардиограммы, наблюдение за концентрацией глюкозы сыворотки и т.п.).
В процессе развития науки и средств измерения возможный переход от одной шкалы измерения к другой, более усовершенствованной. Ведь первые термометры, например, измеряли температуру в шкале порядка (“умеренно”, “тепло”, “горячо” и т.д.).
Иногда также говорят о дискретных и непрерывных шкалах измерения. В общем случае к дискретным относятся шкала классификации и шкала порядка. В этих шкалах нет промежуточных значений, их часто называют не количественными.
Шкала измерения, конечно, накладывает ограничения на статистические характеристики, которые могут быть вычислены для случайных сменных, вымеренных в конкретной шкале, и на методы обработки, которые корректно можно применять к ним.